The aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreIn this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fifth order with delay by using the Lyapunov-Krasovskii functional approach, we obtain some conditions of instability of solution of such equation.
In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
The present work provides to treat real oily saline wastewater released from drilling oil sites by the use of electrocoagulation technique. Aluminum tubes were utilized as electrodes in a concentric manner to minimize the concentrations of 113400 mg TDS/L, 65623 mg TSS/L, and the ions of 477 mg HCO3/L, 102000 mg Cl/L and 5600 mg Ca/L presented in real oily wastewater under the effect of the operational parameters (the applied current and reaction time) by making use of the central composite rotatable design. The final concentrations of TDS, TSS, HCO3, Cl, and Ca that obtained were 93555 ppm (17.50%), 11011 ppm (83.22%), 189ppm (60.38%), 80000ppm (22%), and 4200 ppm (25%), respectively, under the optimum values of the operational parameters
... Show MoreThe aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
The performance quality and searching speed of Block Matching (BM) algorithm are affected by shapes and sizes of the search patterns used in the algorithm. In this paper, Kite Cross Hexagonal Search (KCHS) is proposed. This algorithm uses different search patterns (kite, cross, and hexagonal) to search for the best Motion Vector (MV). In first step, KCHS uses cross search pattern. In second step, it uses one of kite search patterns (up, down, left, or right depending on the first step). In subsequent steps, it uses large/small Hexagonal Search (HS) patterns. This new algorithm is compared with several known fast block matching algorithms. Comparisons are based on search points and Peak Signal to Noise Ratio (PSNR). According to resul
... Show More