Preferred Language
Articles
/
e4aHrYYBIXToZYAL1aOR
Mesoscale analysis of Fiber-Reinforced concrete beams
...Show More Authors

Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m

... Show More
View Publication
Scopus (21)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Strengthening of Reinforced Concrete T- Section Beams Using External Post-Tensioning Technique
...Show More Authors

This research is carried out to investigate the externally post-tensioning technique for strengthening RC beams. In this research, four T-section  RC beams having the same dimensions and material properties were casted and tested up to failure by applying two mid-third concentrated loads. Three of these beams are strengthened by using external tendons, while the remaining beam is kept without strengthening as a control beam. Two external strands of 12 mm diameter were fixed at each side of the web of the strengthened beams and located at depth of 200 mm from top fiber of the section (dps). So that the depth of strands to overall depth of the section ratio (dps

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 24 2019
Journal Name
Journal Of Engineering
Flexural Performance of Laced Reinforced Concrete Beams under Static and Fatigue Loads
...Show More Authors

This paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Results In Engineering
Effectiveness of embedded through-section technique in strengthening reinforced concrete spandrel beams
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads
...Show More Authors

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Structural performance of fiber-reinforced lightweight concrete slabs with expanded clay aggregate
...Show More Authors

Crossref (4)
Crossref
Publication Date
Wed Aug 05 2020
Journal Name
Advances In Structural Engineering
Strength compensation of deep beams with large web openings using carbon fiber–reinforced polymer sheets
...Show More Authors

This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while

... Show More
View Publication
Crossref (23)
Crossref
Publication Date
Wed Aug 05 2020
Journal Name
Advances In Civil Engineering
Strength compensation of deep beams with large web openings using carbon fiber–reinforced polymer sheets
...Show More Authors

This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while

... Show More
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Low Velocity Impact Loading on SelfCompacting Concrete Reinforced with Carbon Fiber Reinforced Polymers
...Show More Authors

t-Self-Compacting Concrete (SCC) reduces environmental noise and has more workability. This research presents an investigation of the behavior of SCC under mechanical loading (impact loading). Two types of cement have been used to produce SCC mixtures, Ordinary Portland Cement (OPC) and Portland Limestone Cement (PLC), which reduces the emission of carbon dioxide during the manufacturing process. The mixes were reinforced with Carbon Fiber Reinforced Polymer (CFRP) which is usually used to improve the seismic performance of masonry walls, to replace lost steel reinforcements, or to increase column strength and ductility. Workability tests were carried out for fresh SCC. Prepared concrete slabs of 500×500×50mm were tested for lo

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of The Mechanical Behavior Of Materials
Efficiency of CFRP torsional strengthening technique for L-shaped spandrel reinforced concrete beams
...Show More Authors
Abstract<p>The present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (<italic>i.e.</italic>, web height/web thickness), and the availability of the CFRP strengthening system. The ledge of the spandrel beams was exposed during testing to a very high eccentric load, which was transferred to the web of the spandrel beam </p> ... Show More
View Publication
Crossref (5)
Crossref