Nanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet calcite sample at subsurface conditions (20 MPa, and 70°C). Moreover, to simulate all the potential scenarios inside the oil reservoirs, various concentrations of nanoparticles, surfactant, and salinities were tested. Contact angle measurements on calcite substrates and spontaneous imbibition test on limestone cores were performed to both the natural and modified (oil-wet) samples to consider the effect of heterogeneity and rock complexity on surface wettability. The results showed that formulations of Sodium Dodecylsulfate-silica nanoparticles can alter the wettability of oil-wet calcite to strongly water-wet at reservoir conditions. Further, the spontaneous imbibition data confirmed the role of nano-suspension to render the oil-wet pores to intermediate and water-wet. The findings of this study provide new insights into nanofluids applications for enhanced oil recovery and carbon geo-storage.
This study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show MoreThis work introduces the synthesis and the characterization of N-doped TiO2 and Co3O4 thin films prepared via DC reactive magnetron sputtering technique. N-doped TiO2 thin films was deposited on indium-tin oxide (ITO) conducting substrate at different nitrogen ratios, then the Co3O4 thin film was deposited onto the N-doped TiO2 layer to synthesize a double-layer TiO2-N/Co3O4 Photoelectrochromic device. Several techniques were used to characterize the produces which are x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy. The Photoelectrochromic device was characterized by UV–Vis spectroscopy and the results show that the double-layer N-dope
... Show MoreThis paper studies the investment project evaluation under the condition of uncertainty. Evaluation of investment project under risk and uncertainty is possible to be carried out through application of various methods and techniques. The best known methods are : Risk-adjusted discount rate , certainty equivalent method , Sensitivity analysis and Simulation method The objective of this study is using the sensitivity analysis in evaluation Glass Bottles project in Anbar province under the condition of risk and uncertainty.
After applying sensitivity analysis we found that the glass bottles project sensitive to the following factors (cash flow, the cost of investment, and the pro
... Show MoreFiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreEfficiency of Pisum sativum plants in using tricalcium super phosphate (TSP) in presence and absence of mycorrhizal fungi was evaluated in the field experiment in College of Science / Al-Mustansiriyah University. The experiment comprised of (6) treatments prepared from the interaction of two levels of inoculation [non-inoculation with fungus F0 and inoculation with Glomus mosseae fungus (F1)]. And three levels of phosphorus: 0,20,40 Kg P/ha. The experimental size was (1x2)m. Irrigation and hand-weeding were done when needed. The following plant measurements were recorded: (Shoots dry weight, concentration of N and P% in addition to percentage of root infection with mycorrhizal fungi at flowering 50% of plants. The re
... Show MoreIn this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO2) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe