The fluctuation properties of energy spectrum, electromagnetic transition intensities and electromagnetic moments in nucleus are investigated with realistic shell model calculations. We find that the spectral fluctuations of are consistent with the Gaussian orthogonal ensemble of random matrices. Besides, we observe a transition from an order to chaos when the excitation energy is increased and a clear quantum signature of the breaking of chaoticity when the single-particle energies are increased. The distributions of the transition intensities and of the electromagnetic moments are well described by a Porter-Thomas distribution. The statistics of electromagnetic transition intensities clearly deviate from a Porter-Thomas distribution (i
... Show MoreThe consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show MoreSMNs like Facebook, YouTube, Twitter, WhatsApp,..etc. are among the most popular sites on the Internet. These sites can provide a powerful means of sharing, organizing, finding information and knowledge. The popularity of these sites provides an opportunity to measure the use them in knowledge sharing, which needs a special scale, but unfortunately, there is no special scale for that. Thus, this study supposes to use SCT as a scale to measure the use of SMNs in electronic knowledge sharing due to it has been used to measure knowledge sharing with its traditional form. This study can help the decision-makers to use these SMNs to share the academics’ knowledge in educational institutes to the communi
... Show MoreOver the past few decades, the health benefits are under threat as many commonly used antibiotics have become less and less effective against certain illnesses not only because many of them produce toxic reactions but also due to the emergence of drug-resistant bacteria. The clinical use of a combination of antibiotic therapy for Pseudomonas aeruginosa infections is probably more effective than monotherapy. The present study aims to estimate the antibacterial and antibiofilm activity of Conocarpus erectus leaves extracts against multi-drug resistant P. aeruginosa isolated from different hospitals in Baghdad city. One hundred fifty different clinical specimens were collected from patients from September 2021 to January 2022. All samples were
... Show MoreGray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More