Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrien
... Show MoreThis paper describes the use of remote sensing techniques in verification of the polluted area in Diyala River and Tigris River and the effected of AL-Rustamiyah wastewater treatment plant, which is located on Diyala River, one of the branches of Tigris River in south of Baghdad. SPOT-5 a French satellite image of Baghdad, Iraq was used with ground resolution of 2.5 m in May 2016. ENVI 5.1 software programming was utilized for Image processing to assess the water pollution of Diyala and Tigris River’s water. Five regions were selected from a study area and then classified using the unsupervised ISODATA method. The results indicated that four classes of water quality which are successful in assessing and mapping water pollution which confi
... Show MoreThis paper compares between the direct and indirect georeferencing techniques in Photogrammetry bases on a simulation model. A flight plan is designed which consists of three strips with nine overlapped images for each strip by a (Canon 500D) digital camera with a resolution of 15 Mega Pixels.
The triangulation computations are carried out by using (ERDAS LPS) software, and the direct measurements are taken directly on the simulated model to substitute using GPS/INS in real case. Two computational tests have been implemented to evaluate the positional accuracy for the whole model and the Root Mean Square Error (RMSE) relating to (30) check points show that th
... Show MoreB Saleem, H Alwan, L Khalid, Journal of Engineering, 2011 - Cited by 2
Abstract
Objective(s): A descriptive study aimed to determine nurses' knowledge about chest physiotherapy techniques for patients with Corona virus disease and observe the relationship between nurses' knowledge and their socio-demographic characteristics.
Methodology: The study was directed in isolation units of Al- Hussein teaching hospitals in Thi-Qar, Iraq for the period from June 1st, 2022 to November 27th, 2022. Non- probability (purposively) sample comprised 41 nurses. A questionnaire was used for data collection and it consists of two parts: the first part comprises socio demographic features, the second part includes self- administered questionnaire sheet wa
... Show MoreBaqubah city has grown extremely rapidly. The rate of growth exceeds the growth of services that must grow side by side with the growth of population. There are natural features that affect the growth of Baqubah city such as Dieyala river, Alssariya river, in addition to agricultural areas .All these natural features affect the growth of Baqubah city in the running form being seen . In this research the remote sensing and geographic information system (GIS) techniques are used for monitoring urban expansion and forecasting the probable axes to the growth of the city, and found that the probability of Baqubah growth to east is preferred due to Baqubah growth to the east would never interfere with natural features. Also in this res
... Show MoreThe object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreThe postmodern ideas and concepts have produced social, political and economic variables that have been affected by wars, crises, the role of globalization and the information revolution. They have created many variables in concepts and great variables in technological, artistic and cultural innovations. All these changes have contributed to changing the form of the theatrical show aesthetically and intellectually, which cast a shadow over the nature of the actor's performance who has become more demanding to change his performance and to find the mechanisms and new nature of work governing him corresponding to those variables and this prompted the researcher to adopt the subject (the performance variable of the actor's techniques in pos
... Show More