The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be unsatisfactory for deep beams with large web openings. A simplified empirical equation to estimate the shear strength for deep T-beams with large web openings based on the strut-and-tie model was proposed and verified with numerical analysis. The numerical study considered three-dimensional finite element models, in ABAQUS software, that have been developed to simulate and predict the performance of deep beams. The results of numerical simulations were in good agreement and exhibited close correlation with the experimental data. The test results showed that the enlargement in the size of web openings substantially reduces the elements' shear capacity. The experiments revealed that increasing the width of the openings has more effect than the depth at reducing the load-carrying capacity.
The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
Abstract
In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue l
... Show MoreIn the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Erosion and deposition are natural phenomena in the river estuaries that could be presented as a dynamic process involving removing materials from one location and accumulating these materials at other locations. These two phenomena may cause changes in waterways and affect offshore structures. The Shatt Al-Arab River Estuary, Iraq was greatly affected by these two phenomena, and topography changes occurred. Velocity profiles and bed shear stress can be used as indicators to identify the erosion and deposition locations. Large-scale roughness elements proved to make beneficial changes in the hydraulic properties of open channels. They can create desirable effects to control erosion