Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, which are root mean square, four-order autoregressive, wavelength, slope sign change, zero crossing (ZC), mean absolute value, and cardinality. In this article, the time-domain features were first extracted from the EMG and acceleration signals. Then, the spectral regression (SR) and principal component analysis dimensionality reduction methods are employed to identify the most salient features, which are then passed to the linear discriminant analysis (LDA) classifier. EMG and axial acceleration signal datasets from six intact-limbed and four amputee participants exhibited an average classification error of 15.68 % based on SR dimensionality reduction using the LDA classifier.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreIn the present work studies were carried out to extract a cationic dye (Methylene Blue MB) from an aqueous solution using emulsion liquid membrane process (ELM). The organic phase (membrane phase) consists of Span 80 as emulsifier, sulfuric acid solution as stripping agent and hexane as diluent.
In this study, important factors influencing the extraction of methylene blue dye were studied. These factors include H2SO4 concentration in the stripping phase, agitation speed in the dye permeation stage, Initial dye concentration and diluent type.
More than (98%) of Methylene blue dye was extracted at the following conditions: H2SO4 concentration (1.25) M, agitation
... Show MorePreserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.
... Show MoreThis paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded fro
... Show MoreThe cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but in this paper, the researcher proposed five pile types, one of them is not a traditional, and developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t
... Show MoreDiode lasers are becoming popular in periodontal surgery due to their highly absorption by pigments such as melanin and hemoglobin their weak absorption by water and hydroxyapatite makes them safe to be used around dental hard tissues. Objective: The aim of the present study was to evaluate the efficiency of diode laser in performing gingivectomy in comparison to conventional scalpel technique in patients with chronic inflammatory enlargement. Materials and methods: Thirty patients were selected for this study. All of them required surgical treatment of gingival enlargements and were randomly divided into two groups: Control group (treated by scalpel and include sixteen patients) and study group (treated with diode laser 940nm and includ
... Show More