<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected region to produce a binary mask for the stamp area. Finally, the binary mask is combined with the original image to extract the stamp regions. The results indicate that the number of clusters can be determined dynamically and the largest cluster that has minimum standard deviation (i.e., always the largest cluster is the background cluster). Also, show that the binary mask can be established from more than one segment to cover are all stamp’s disconnected pieces and it can be useful to remove the noise appear with stamp region.</span>
Mobile phones are widely used nowadays, for different application such as wireless control and monitoring due to its availability and ease of use. The implemented system is based on "global system mobile (GSM)" network by using "short message service (SMS)". The design mainly contains a GSM modem and interfacing unit circuit with microcontrollers. This system could control up to eight different electrical devices such as light, Air conditioner, washing machine and many more applications which needed in daily life in different area (House, Office, or factory, etc.). The control is done by sending a specific SMS messages from traditional or smart phone. The controlling devices are restricted to a pre-defined phone number and are set in the so
... Show MoreThis paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreIn the digital age, protecting intellectual property and sensitive information against unauthorized access is of paramount importance. While encryption helps keep data private and steganography hides the fact that data are present, using both together makes the security much stronger. This paper introduces a new way to hide encrypted text inside color images by integrating discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD), along with AES-GCM encryption, to guarantee data integrity and authenticity. The proposed method operates in the YCbCr color space, targeting the luminance (Y) channel to preserve perceptual quality. Embedding is performed within the HL subband obtained from DWT deco
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreThis research has been prepared to isolate and diagnose one of the most important vegetable oils from the plant medical clove is the famous with Alaeugenol oil and used in many pharmaceuticals were the isolation process using a technique ultrasonic extraction and distillation technology simple
Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show More