The regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the full-field model on the basis of time-consuming and computational analysis. The sector model was neighboring by extra grid blocks and three pseudo wells as injector wells to realize the pressure on the sector boundary, which attained an acceptable history matching. The fluid model and physics model were introduced by using Pressure Volume Temperature data of well involved in the study area and two relative permeability curves. Fourteen wells were utilized in this work, four wells are injectors, and the rest are producer. The development scenarios were implemented by setting various targets of oil production and different water injection rates required for pressure maintenance operations. Optimization of water cut has been applied by adjustment of production and injection rates and shut off the high water cut intervals. The results obtained from this study showed that the inverted 9-spot has a good recovery which is illustrated in the case_2C, the production rate was (49,000 STB/D) with minimum water cut (27.5%) as compared with a five-spot pattern.
In this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreThis research explores the obstacles teachers encounter in executing the smart schools initiative within the framework of Iraq, where educational facilities and digital preparedness are still at an early stage. Although worldwide trends reveal the growing use of smart technologies in education, Iraq has been hindered by systemic barriers, such as archaic curricula, restricted access to technologies, and an unqualified teaching staff. Data were collected using a validated questionnaire on 122 public school teachers working in Baghdad with a descriptive-analytical methodology. The study divided challenges into five areas: infrastructure, teacher preparedness, administrative support, curricular adaptation and cultural resistanc
... Show MoreENGLISH
Due to the increasing interest in the quality of auditing by writers, researchers and regulators of the auditing profession. The matter necessitated a statement of the extent to which the auditor practices professional skepticism, because of its significant impact in discovering errors and material misrepresentations contained in the financial statements in order to give the financial community confidence in them and the success of the audit process. The research aims to clarify the concept and importance of the practice of professional skepticism and its effect on the quality of the auditor's performance in Iraq. To achieve the research objectives, the two re
... Show MoreAbstract:
Interest in the topic of prediction has increased in recent years and appeared modern methods such as Artificial Neural Networks models, if these methods are able to learn and adapt self with any model, and does not require assumptions on the nature of the time series. On the other hand, the methods currently used to predict the classic method such as Box-Jenkins may be difficult to diagnose chain and modeling because they assume strict conditions.
... Show More
Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreThis research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv
... Show More