Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the formation. This is particularly important in CO2-EOR as it helps to understand reservoir connectivity and optimize CO2 injection. A geomechanical model is also necessary to evaluate the behavior of the reservoir and cap rock. This model can help predict the stress distribution, deformation, and potential failure zones. The Mishrif Formation has five units (from CI to MB-2). Based on the current results, the cap rock units (CI, CII) possess weak mechanical properties. The 1D mechanical earth model highlights different faulting regimes within the Mishrif Formation across various wells;as wells as, different trends of elasticand mechanical properties across the formation units. Some wells exhibit reverse (thrust) type faulting in the reservoir units and normal faulting in the barrier units. Conversely, other wells display strike-slip faulting in the reservoir units and reverse/thrust faulting in the barrier units. Also, the reservoir units exhibited it’s stiffness, brittle strength, it’s endurance to shear force and proved it’s geomechanical stability due to the high values of static young modulus, unconfined compressive strength, bulk modulus and relatively high mechanical properties it's important to note that the in-situ stress has significantly decreased in the barrier units.
The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreIn the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show MoreThis paper presents numerical and experimental stress analyses to evaluate the contact and bending stresses on the teeth of spiral bevel gear drive. Finite Element Method has been adopted as a numerical technique which accomplished basically by using ANSYS software package. The experimental stress analysis has been achieved by using a gear tooth model made of Castolite material which has photoelastic properties. The main goal of this research is detecting the maximum tooth stresses to avoid the severe areas that caused tooth failure and to increase the working life for this type of gear drives.
Background: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreThe economical design of plate loaded by pressure can be obtained by using stiffeners instead of increasing the thickness of plate. The main subject of this work is to obtain the effect of stiffener height on the maximum stress in the plate subjected to pressure load. Different plate-stiffener sets are selected to find the effects of stiffener thickness, plate dimensions and pressure, on the optimum stiffener height. The models under consideration are square plates clamped rigidly from four edges. Finite Element method is used to analyze 160 different models by using the Finite Element software package ANSYS version 11. Another analysis method based on maximum stress equation is used to analyze 30 models. The graphical comparison of results
... Show MoreObjective: study aims to identify the diabetes type2 clients self management skills toward dietary pattern
, and find out the relationship between variables which are (Age, gender, educational level, duration of DM
diagnosis, and monthly income) with diabetes type 2 clients self management skills toward dietary pattern
Methodology: descriptive study was carried out through the present investigation from January 2nd
2011to September 2nd 2011 in order to achieve the objectives of the present study. A non probability
(purposive) sample, (200) cases which consists of clients who were attending Al-Nasiriyha diabetic center.
Including (118) males and (82) females. The data were collected by utilization of the study instrument
This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
Background: The highest concentrations of
blood glucose during the day are usually found
postprandialy. Postprandial hyperglycemia (PPH)
is likely to promote or aggravate fasting
hyperglycemia. Evidence in recent years suggests
that PPH may play an important role in functional
& structural disturbances in different body organs
particularly the cardiovascular system.
Objective: To evaluate the effect of (PPH) as a
risk factor for coronary Heart disease in Type 2
diabetic patients.
Methods: Sixty-three type2 diabetic patients
were included in this study. All have controlled
fasting blood glucose, with HbA1c correlation.
They were all followed for five months period
(from May to October 2008)