This experiment was carried out at a private field in the eastern Radwaniyah Baghdad for the fall season 2020/2021 and spring 2021 to study the effects of adding mineral fertilizers, spraying salicylic acid and amino acids on some growth traits and yield of industrial potato plants. 200 kg N h-1 , 100 kg P2O5 h-1, 100 kg K2O h-1 and F2 consist of 275 kg N h-1, 180 kg P2O5 h-1, 200 K2O h-1 and F3 consist of 350 kg N h-1, 360 kg P2O5 h-1, 300 K2O h-1 and salicylic acid in three concentrations of 0,50 and 100 mg L-1 ( S1, S2, S3) and amino acids in three concentrations of 0, 1.25 and 2.5 ml L-1 ( A1, A2 , A3) It was carried out as a factorial split plot experiment, where the fertilizer levels (F1, F2 and F3) are in the main plot and the interaction between salicylic acid and amino acids is in the sub plot with three replications. The results showed the superiority of the F3 level by giving the highest plant height in the spring season and the largest number of leaves and leaves area for the two seasons, while the F2 level gave the highest tuber weight and the highest percentage of dry matter for fall seasons, and the concentration S3 and A2 was differed in most of the growth indicators and the yield for both seasons of the experiment.
The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show MoreThe aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and o
The degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
Abstract To estimate the seroprevalence of HCV infection among HIV-infected haemophiliacs and to demonstrate the most prevalent HCV genotype, 47 HIV-infected haemophilia patients were screened for anti-HCV antibodies. By performing polymerase chain reaction and DNA enzyme immunoassay, HCV-RNA was detected with subsequent genotyping. Seroprevalence of anti-HCV antibodies was 66.0%. Of 31 HCV/HIV co-infected patients, 21 (67.7%) had no history of blood transfusion. We detected 4 HCV genotypes: 1a, 1b, 4 and 4 mixed with 3a, HCV-1b being the most frequent. Contaminated factor VIII (clotting factor) could be responsible for disease acquisition.
In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela
... Show MoreAn experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge co
... Show MoreThe change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o