Breast cancer is the most common malignancy affecting women's health, with an increasing incidence worldwide. This study aimed to measure the intracellular concentration of the hypoxia-inducible factor 1 α (HIF-1α), tumor suppression protein p53, and estradiol (E2) in tumor tissues of adult females with breast cancer and their relation to tumor grade, tumor size, and lymph node metastases (LNM). The study was conducted on 65 adult female participants with breast mass admitted to the operating theater in Al-Hussein Teaching Hospital and Al-Habboby Teaching Hospital in Nasiriyah, Iraq, from January to November 2021. Fresh breast tumor tissues were collated and homogenized for intracellular biochemical analysis using the enzyme-linked immunosorbent assay method. In total, 44 (58%) out of 65 patients, in the age range of 18-42 years and the mean±SD age of 32.55±6.40 years, had fibroadenomas, and other 21 (42%) cases, in the age range of 32-80 years and the mean±SD age of 56±14.4 years had invasive ductal carcinoma (IDC) breast cancer. Intracellular levels of HIF-1α, p53, and E2 were elevated significantly (P<0.001) in IDC cases compared to the benign group. The most malignant tumors of IDC cases were in grade III and sizes T2 and T3. The tissue concentrations of HIF-1α, P53, and E2 were significantly elevated in patients with tumor stage T3 compared to T2 and T1. A significant elevation was found in the levels of HIF-1α, p53, and E2 in the positive LNM subgroup compared to the negative LNM group. Based on the obtained results, the prognostic value of the intracellular HIF-1α is considered to be a useful prognostic factor in Iraqi women with ICD and the combination of a HIF-1α protein with the nonfunctional p53 and E2 tends to indicate the proliferation, invasiveness, and metastases of the breast tumors.
Consuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.
Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated
... Show MoreSaccharomyces Cerevisiae cells were immobilized in calcium alginate beads and activated charcoal for use in the
production of ethanol from batch fermentation of sugar beet waste. Treatment of the waste with NaOH to increase the
ability of lignocellulose material to hydrolysis by acid (2N H2SO4) to monosaccharide and disaccharide (mainly glucos).
The high reducing sugar concentration obtained was equal to 9.2gm/100ml (10Brix) after treatment. Fermentation
parameters, are (pH, glucose concentration (2.5-25 gm/100ml), immobilized agent concentration (2.5-25 gm/100ml)
were studied to find the optimum physiological condition. And the highest ethanol concentration obtained from the
fermentation in the presence of 20%(wt/v) ca
Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show MorePolyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreStatistical studies are reported in this article for an active galactic nuclei sample of different type of active galaxies Seyferts 1, Seyferts 2, and Quasars. These sources have been selected from a Catalogue for bright X-ray galaxies. The name of this index is ROSAT Bright Source Catalogue (RBSC) and the NRAO VLA Sky Survey (NVSS). In this research, multi-wavelength observational bands Radio at 1.4 GHz, Optical at 4400 A0, and X-ray at energy 0.1-2.4 KeV have been adopted in this study. The behavior of flux density ratios has been studied , with respect to the absolute magnitude . Furthermore, the Seyfert1 and Seyfert 2 objects are combined in one group and the QSOs are collectest in another group. Also, it has been found that t
... Show MoreA submerged weir is a hydraulic structure utilized to control flow in canals and rivers. Water scarcity is a persistent issue in Iraq, especially during the dry season when irrigation withdrawals reduce downstream water levels in canals (Water is lost from irrigation canals due to seepage, evaporation, and vegetation growth). The final section of the Bani Hassan Canal experiences significant drops in water surface (WS) levels, negatively impacting irrigation efficiency. This study addresses that gap by investigating the use of submerged weirs to enhance water distribution and raise WS in the final 6 km segment of the canal. A one-dimensional (1D) hydraulic mode
Zinc Oxide (ZnO) is considered as one of the best materials already used as a window layer in solar cells due to its antireflective capability. The ZnO/MgF2 bilayer thin film is more efficient as antireflective coating. In this work, ZnO and ZnO/MgF2 thin films were deposited on glass substrate using pulsed laser deposition and thermal evaporation deposition methods. The optical measurements indicated that ZnO thin layer has an energy gap of (3.02 eV) while ZnO/MgF2 bilayer gives rise to an increase in the energy gap. ZnO/MgF2 bilayer shows a high energy gap (3.77 eV) with low reflectance (1.1-10 %) and refractive index (1.9) leading to high transmittance, this bilayer could be a good candidate optical material to improve the performance
... Show More