Background. Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results. Structural and elemental analyses were conducted on the deposited coatings using XRD, FESEM, and EDS showing a unique phase of coating metals over their substrates with obvious homogeneous even deposition. A highly significant positive correlation was found between sputtering time and thickness of the achieved coatings. AFM revealed a reduction in the surface roughness of 316L SS substrates sputtered with all coating materials, significantly seen in V coatings. Conclusions. Sputtering time and coating material play a significant role in terms of microstructure and topography of the achieved coatings being the best in the Ta group; moreover, surface roughness was significantly improved by V coatings. Likewise, it is found to be sputtering time independent for all used coatings.
Background: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of
... Show MoreIn this work, synthesized N4,N4`-bis(2, 3, 4 nitro benzylidene) biphenyi-4-4`-diamine(B1-B3) , was tested as an inhibitors in controlling the corrosion of carbon steel in NaCl 3.5% solution by using open circuit potential (OCP),at four different temperatures (293, 303, 313 and 323 K). Furthermore, the surface morphology was investigated using the Atomic force microscopy (AFM). The effect of using different Schiff bases and temperature was also investigated. Schiff bases was synthesized and characterized via using. Fourier Transform Infrared Spectroscopy (FT-IR)and Atomic Force Microscope (AFM) characterized . The experimental results shown that Schiff bases can consider as an excellent corrosion inhibitors for carbon steel in NaCl 3
... Show MoreObjective: To enhance bonding strength between thermoplastic denture base and acrylic soft liner through ethyl acetate surface treatment. Materials and Methods: Modifications of thermoplastic acrylic denture base surface were investigated with SEM. FTIR was used to detect whether there was a chemical bond between thermoplastic acrylic and the organic solvent. A total of 80 samples were prepared and divided into 20 samples for the surface roughness test and 60 samples for the shear bond strength test. Failure type was assessed visually. Results: Shear bond strength and surface roughness values of un treated samples were lower in comparison to surface treated groups; the greatest post thermocycling bond strength value was recorded for the sam
... Show MoreA competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show MoreBackground: This research describes the methodology used for the preparation of selenium nanoparticles from Pseudomonas aeruginosa and their administration to lambs for lipid profile checking, administration of selenium nanoparticles as a medication in lambs results in hypolipidemia. Aim: The study aimed to investigate the potential of selenium nanoparticles in improving lipid profiles in lambs. Methods: Healthy lambs (n=10) of similar age and weight were selected for the study. The animals were housed in individual pens with free access to water and a standard diet. The lambs were randomly divided into two groups: the control group (n=5) and the treatment group (n=5). The control group received a standard diet, while the treatme
... Show Morecharge transfer complex formed by interaction between the p- aminodiphenylamine (PADPA) as electron donor with iodine as electron acceptor in ethanol at 250C as evidenced by color change and absorption. The spectrum obtained from complex PADPA – Iodine shows absorptions bands at 586 nm. All the variables which affected on the stability of complex were studies such as temperature, pH, time and concentration of acceptor. The linearity of the method was observed within a concentration rang (10–165) mg.L-1 and with a correlation coefficient (0.9996), while the molar absorbitivity and sandell sensitivity were (4643.32) L.mol-1.cm-1 and (0.0943) μg.cm-2, respectively. The adsorption of complex PADPA–I2 was studied using adsorbent surfaces
... Show MoreInvestigation of the adsorption of Chromium (VI) on Fe3O4 is carried out using batch scale experiments according to statistical design using a software program minitab17 (Box-Behnken design). Experiments were carried out as per Box-Behnken design with four input parameters such as pH (2-8), initial concentration (50–150mg/L), adsorbent dosage (0.05–0.3 g) and time of adsorption (10–60min). The better conditions were showed at pH: 2; contact time: 60 min; chromium concentration: 50 mg/L and magnetite dosage: 0.3 g for maximum Chromium (VI) removal of (98.95%) with an error of 1.08%. The three models (Freundlich, Langmuir, and Temkin) were fitted to experimental data, Langmuir isotherm has bette
... Show More