يهدف البحث الى دراسة وتحليل الهندسة المتزامنة (CE) وتحسين التكلفة(CO)، واستعمال مخرجات الهندسة المتزامنة كمدخلات لتحسين التكلفة، وبيان دور الهندسة المتزامنة في تحسين جودة المنتوج، وتحقيق وفورات في وقت التصميم والتصنيع والتجميع وتخفيض التكاليف، فضلاً عن توظيف بعض النماذج لتحديد مقدار الوفورات في الوقت ومنها نموذج(Lexmark) ونموذج (Pert) لتحديد الوفورات في وقت التصميم وقت لتصنيع والتجميع. ولتحقيق اهداف البحث تم اختيار الشركة العامة للصناعات الكهربائية والكترونية \معمل محرك المبردة وبالتحديد محرك حصان الواقعة في بغداد محلاً للبحث، اذ تم تطبيق تقنية الهندسة المتزامنة في الشركة عينه البحث بالشكل الذي يلائم البيئة التي تعيشها الشركة من اجل تحسين تكاليفها من خلال تحسين الجودة وتخفيض الوقت وكلفة اقل . وقد توصل الباحث الى مجموعة من الاستنتاجات والتوصيات ومن أبرز الاستنتاجات ما يأتي: تعد تقنية الهندسة المتزامنة من التقنيات الأكثر ملائمة لبيئة الاعمال وما رافقتها من تغيرات سريعة وما لها من أهمية لعينة البحث، ان العمل وفق الهندسة المتزامنة (الوضع المقترح) يجعلها على أساس التعاون الجماعي والمتزامن، ويتم تطوير المنتجات بصورة أسرع عن طريق الأداء المتزامن لعمليات تطوير المنتج ولاسيما تصميم المنتج والعملية. إما أهم التوصيات ما يأتي: يتعين على الوحدات الاقتصادية الاهتمام بالتقنيات الكلفوية والإدارية ونها تقنية الهندسة المتزامنة لأنها أداة هامة لتحسين وتطوير المنتجات القائمة والجديدة. على الوحدات الاقتصادية الاهتمام بالزبون باعتباره مصدر قوة للوحدة الاقتصادية، من خلال اشراك الزبائن في عملية تصميم وتطوير المنتجات بالشكل الذي يلائم رغباتهم، واجراء دراسات وبحوث ميدانية في السوق للتعرف على حاجاتهم ورغباتهم. ضرورة الاهتمام بالتصميم للتكلفة (DTC) من اجل جعل المنتجات قريبة من الزبائن، أي من خلال التصميم جعل المنتجات قابلة للشراء وعلى فريق التصميم مراعاة القدر المقبول من الجودة
A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreData-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show MoreBrainstorming has been a common approach in many industries where the result is not always accurate, especially when procuring automobile spare parts. This approach was replaced with a scientific and optimized method that is highly reliable, hence the decision to optimize the inventory inflation budget based on spare parts and miscellaneous costs of the typical automobile industry. Some factors required to achieve this goal were investigated. Through this investigation, spare parts (consumables and non-consumables) were found to be mostly used in Innoson Vehicle Manufacturing (IVM), Nigeria but incorporated miscellaneous costs to augment the cost of spare parts. The inflation rate was considered first due to the market's
... Show MoreThe paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreElectrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show More