This paper presents a study (experimentally) for strengthening reinforced concrete (RC) beams with Near-Surface-Mounted (NSM) technique. The use of this technique with CFRP strips or rebars is an efficient technology for increasing the strength for flexure and shear or for repairing damaged reinforced concrete (RC) members. The objective of this research is to study, experimentally, RC beams either repaired or strengthened with NSM CFRP strips and follow their flexural behavior and failure modes. NSM-CFRP strips were used to strengthen three RC beam specimens, one of them was initially strengthened and tested up to failure. Four beam specimens have been initially subjected to preloading to 50% and 80% of ultimate load. Two of the specimens were either repaired or strengthened with NSM-CFRP strips. All the repaired/strengthened pre-damaged beams have been tested up to failure by using compression-testing machine. An appropriate-scale model was adopted. All the specimens have a cross-sectional dimension of 150 mm with an effective span of 110 mm. Depends on the experimental results, a better performance of the strengthened concrete specimens was obtained in both strength and serviceability. As a comparison with the control beam specimen, all the repaired specimens show a very good increase of about 40% in the load-carrying capacity and a high improvement in resistance to cracking of about 120% in NSM. On the other hand, the test results of NSM CFRP-strengthened concrete specimens with a preloading of 50% and 80% of the ultimate load show an increase of about 9% to 20% in the load-carrying capacity, for 50% and 80% pre-loading, respectively an improvement in deflection of about 2% to 27% in NSM, for 80% and 50% pre-loading, respectively.
This paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete. In this study, self-compacting concrete is produced by using limestone powder as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate which is thermostone aggregate as internal curing material in three percentages of (5%, 10%, 15%) for self-compacting concrete, and the use of two external curing conditions which are water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh self-compacting concrete were conducted. The second part included conducting compressive str
... Show Morehis study aimed to investigate the usability of Recycled Concrete Aggregate (RCA) in warm mix asphalt (WMA) as the implementation of sustainable construction technology. Five replacement rates (0%, 25%, 50%, 75%, and 100%) were tested for the coarse fraction of virgin aggregate (VA) with 3 types of RCA: untreated RCA, HL-treated RCA, and HCL-treated RCA. Scanning electron microscopy (SEM) analyses were performed to investigate the surface morphology for both treated and untreated RCA. The optimum asphalt cement content for every substitution rate was determined using Marshall mix design method. Thereafter, asphalt concrete specimens were prepared using the optimum asphalt cement content, followed by the evaluation of their performance prope
... Show MoreThe durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects.
... Show MoreTests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreThis paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.
... Show MoreThe aim of this research is to construct an educational program in light of the theory of behavioral cognitive and its impact on the development of the efficient response to students affected by crises (centers of your right to education). To achieve the objectives of the research, two scales were developed by the researcher in addition to two equivalent hypotheses were formulated. The scale contains (26) items divided into five fields; for its validity and reliability were derived based on the measure of efficient response, an educational program based on the theory of behavioral cognition. The test and the educational program were applied to a sample of (60) students from the centers of your right to education, divided into experimenta
... Show MoreThe essay discusses how different environmental factors affect plant growth by explaining how each factor affects the physiological processes within the plant. The essay begins by explaining the effect of temperature on plant growth, as high or low temperatures can significantly affect the rate of photosynthesis and lead to a reduction in water and nutrient absorption. It also discusses the light intensity impacting plants because the more appropriate the light intensity is, the more enhanced the plant's photosynthesis ability, and in the excess or insufficient light condition, the growth can be inhibited. Additionally, the article outlines the effect of water shortage on the plant because this leads to the closure of stomata to avoid water
... Show MoreBackground: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show More
