Preferred Language
Articles
/
dRZzcokBVTCNdQwCXomo
A Decision Modeling Approach for Data Acquisition Systems of the Vehicle Industry Based on Interval-Valued Linear Diophantine Fuzzy Set
...Show More Authors

Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide membership and nonmembership degrees freely, simulate real-world ambiguity efficiently, utilize a narrow fuzzy number space, and deal with interval data. Thus, this study used a more efficient fuzzy environment interval-valued linear Diophantine fuzzy set (IVLDF) with FWZIC II for criterion weighting and IVLDF with FDOSM for DAS modeling to address the issues and support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. The proposed methodology comprises two consecutive phases. The first phase involves adapting a decision matrix that intersects DAS alternatives and criteria. The second phase (development phase) proposes a decision modeling approach based on formulation of IVLD-FWZIC II and IVLD-FDOSM II to model DASs. A total of 14 DASs were modeled on the basis of 15 DAS criteria, including seven subcriteria for “comprehensive complexity assessment” and eight subcriteria for “design and implementation,” which had a remarkable effect on the DAS design when implemented by industrial communities. Systematic ranking, sensitivity analysis, and modeling checklists were conducted to demonstrate that the modeling results were subject to systematic ranking, as indicated by the high correlations across all described scenarios of changing criterion weight values, supporting the most important research points, and proposing a value-adding process in modeling the most desirable DAS.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Classification of Fetus Gender Based on Fuzzy C-Mean Using a Hybrid Filter
...Show More Authors
Abstract<p>This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT), (median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Lap</p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
An Asymptotic Analysis of the Gradient Remediability Problem for Disturbed Distributed Linear Systems
...Show More Authors

The goal of this work is demonstrating, through the gradient observation of a   of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of  ( -system) was developed based on finite time  ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal On Technical And Physical Problems Of Engineering
A Multiple System Biometric System Based on ECG Data
...Show More Authors

A Multiple System Biometric System Based on ECG Data

Scopus (1)
Scopus
Publication Date
Tue May 05 2015
Journal Name
International Journal Of Advanced Scientific And Technical Research
Fuzzy Stochastic Probability of The Solution of Single Stationary Non- Homogeneous Linear Fuzzy Random Differential Equations
...Show More Authors

Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhancing Spatial Accuracy of OpenStreetMap Data: A Geometric Approach
...Show More Authors

OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Aug 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
A New Method for Face-Based Recognition Using a Fuzzy Face Deep Model
...Show More Authors

Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Mar 02 2020
Journal Name
Journal Of Applied Research In Higher Education
Proposal of a guide for talent evaluation and management based on a qualitative and three-staged approach
...Show More Authors
Purpose

The key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.

Design/methodology/approach

The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty-three individuals from six Australian universities parti

... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (22)
Crossref (10)
Scopus Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Neuro-Self Tuning Adaptive Controller for Non-Linear Dynamical Systems
...Show More Authors

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl

... Show More
View Publication Preview PDF