Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide membership and nonmembership degrees freely, simulate real-world ambiguity efficiently, utilize a narrow fuzzy number space, and deal with interval data. Thus, this study used a more efficient fuzzy environment interval-valued linear Diophantine fuzzy set (IVLDF) with FWZIC II for criterion weighting and IVLDF with FDOSM for DAS modeling to address the issues and support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. The proposed methodology comprises two consecutive phases. The first phase involves adapting a decision matrix that intersects DAS alternatives and criteria. The second phase (development phase) proposes a decision modeling approach based on formulation of IVLD-FWZIC II and IVLD-FDOSM II to model DASs. A total of 14 DASs were modeled on the basis of 15 DAS criteria, including seven subcriteria for “comprehensive complexity assessment” and eight subcriteria for “design and implementation,” which had a remarkable effect on the DAS design when implemented by industrial communities. Systematic ranking, sensitivity analysis, and modeling checklists were conducted to demonstrate that the modeling results were subject to systematic ranking, as indicated by the high correlations across all described scenarios of changing criterion weight values, supporting the most important research points, and proposing a value-adding process in modeling the most desirable DAS.
A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution
Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos
... Show MoreIn this study, the quality assurance of the linear accelerator available at the Baghdad Center for Radiation Therapy and Nuclear Medicine was verified using Star Track and Perspex. The study was established from August to December 2018. This study showed that there was an acceptable variation in the dose output of the linear accelerator. This variation was ±2% and it was within the permissible range according to the recommendations of the manufacturer of the accelerator (Elkta).
This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show More