<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. This study presents a hybrid greedy hill climbing algorithm (HGHC) that ensures both effectiveness and near-optimal results for generating a small number of test data. To make certain that the suggested HGHC outperforms the most used techniques in terms of test size. It is compared to others in order to determine its effectiveness. In contrast to recent practices utilized for the production of covering arrays (CAs) and mixed covering arrays (MCAs), this hybrid strategy is superior since allowing it to provide the utmost outcome while reducing the size and limit the loss of unique pairings in the CA/MCA generation.</p>
This research basically gives an introduction about the multiple intelligence
theory and its implication into the classroom. It presents a unit plan based upon the
MI theory followed by a report which explains the application of the plan by the
researcher on the first class student of computer department in college of sciences/
University of Al-Mustansiryia and the teacher's and the students' reaction to it.
The research starts with a short introduction about the MI theory is a great
theory that could help students to learn better in a relaxed learning situation. It is
presented by Howard Gardener first when he published his book "Frames of
Minds" in 1983 in which he describes how the brain has multiple intelligen
Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological proce
... Show MoreThe estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To
... Show More