Although the number of implants has increased gradually and consistently over the years to around one million per year globally, there is still far more potential for advancement in the field of dental implantology which is typically growing quickly. This study investigates the effect of nanofiller reinforcement high-performance polymer matrix to enhance mechanical and physical characteristics. Calcium silicate (CS)/Polyetherketoneketone (PEKK) biomedical composite (G0 as a control group) is reinforced with different weight percentages (G1-G4) of tellurium dioxide nanoparticles (TeO2NPs) ( n = 5). This research uses ethanol as a binder for mixing various weight percentages (wt%) of TeO2NPs with CS/PEKK biomedical composite. The combination is then dried at 120°C in a forced convection oven before being put into special molds and compressed for 20 min Holding period at 310°C and 15 MPa. The composites were prepared via the compression molding technique. Morphological, mechanical, and physical characteristics were studied. The findings of this study suggested improvement in the interfacial interaction between TeO2NPs (G1 and G2) and CS/PEKK bioactive composite resulting in better mechanical and physical properties, especially at 1 w% of TeO2NPs (G2).
Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have differ
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreIn this review, previous studies on the synthesis and characterization of the metal Complexes with paracetamol by elemental analysis, thermal analysis, (IR, NMR and UV-Vis (spectroscopy and conductivity. In reviewing these studies, the authors found that paracetamol can be coordinated through the pair of electrons on the hydroxyl O-atom, carbonyl O-atom, and N-atom of the amide group. If the paracetamol was a monodentate ligand, it will be coordinated by one of the following atoms O-hydroxyl, O-carbonyl or N-amide. But if the paracetamol was bidentate, it is coordinated by atoms (O-carbonyl and N-amide), (O-hydroxyl and N-amide) or (O-carbonyl and O-hydroxyl). The authors also found that free paracetamol and its complexes have antimicrobial
... Show MoreThree new hydrazone derivatives of Etodolac were synthesized and evaluated for their anti-inflammatory activity by using egg white induced paw edema method. All the synthesized target compounds were characterized by CHN- microanalysis, FT-IR spectroscopy, and 1HNMR analysis. The synthesis of the target (P1-P3) compounds was accomplished following multistep reaction procedures. The synthesized target compounds were found to be active in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Etodolac).
Three of imide intermediate products were synthesized by reacting of phthalic anhydride with glycine (2a), and tetrachloro phthalic anhydride with glycine , (S)-2-[(tert-Butoxycarbonyl)amino]-3-aminopropionic acid ( 2b,c) respectively in dry toluene with azeotropic removal of water using Dean- stark apparatus then carboxyl functional group activated by refluxing with thionyl chloride, the resulted acid chloride (3a-c) were reacted with different amine (5-flourouracil, 4-chloroaniline, 4-bromoaniline, 2-amino thiazole, and pyrrolidine) (4a-e) , the resulted products consider as
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreNew Schiff bases derived from D-galactose were synthesized by condensation of aldehyde (1,2:3,4-Di-O-isopropylidene-6-carboxaldehyde-α-D-galactopyranose) with different aromatic amines such as (4-bromo, 3-hydroxy, 4-iodo, 4-methoxy) aniline in dry benzene using glacial acetic acid as a catalyst. These compounds were converted to oxazepine derivatives by addition reaction with maleic anhydride in dry benzene as a solvent. The structures of the synthesized compounds have been characterized by elemental analysis, FTIR spectra, some of them by using 1HNMR spectra and measurement of its physical properties.
A new series of N-acyl hydrazones (4a-g) derived from indole-3-propionic acid (IPA) were synthesized. These N-acyl hydrazones were prepared by the reaction of 3-(1H-indol-3-yl) propane hydrazide and aldehyde in the existence of glacial acetic acid as a catalyst. 1HNMR and FT-IR analyses were used to identify the synthesized compounds and they were in vitro evaluated as antibacterial agents against six different types of microorganisms by using well diffusion method. All the tested N-acyl hydrazones (4a-g) displayed moderate activity against the Gram-negative E.coli, comparable to that of Amoxicillin. Some of the tested N-acyl hydrazones also exhibited intermediate activity ag
... Show MoreNano crystalline copper sulphide (Cu2S) thin films pure and 3% Bi doped were deposited on glass substrate by thermal evaporation technique of thickness 400±20 nm under a vacuum of ~ 2 × 10− 5 mbar to study the influence of annealing temperatures ( as-deposited, and 573) K on structural, surface morphology and optical properties of (Cu2S and Cu2S:3%Bi). (XRD) X-ray diffraction analysis showed (Cu2S and Cu2S:3%Bi) films before and after annealing are polycrystalline and hexagonal structure. AFM measurement approves that (Cu2S and Cu2S:3%Bi) films were Nano crystalline with grain size of (105.05-158.12) nm. The optical properties exhibits good optical absorption for Cu2S:3%Bi films. Decreased of optical band gap from 2.25 to 2 eV after dop
... Show MoreThis work concerns the synthesis of two types of composites based on antimony oxide named (Sb2O3):(WO3, In2O3). Thin films were fabricated using pulsed laser deposition. The compositional analysis was explored using Fourier transform infrared spectrum (FTIR), which confirms the existence of antimony, tungsten, and indium oxides in the prepared samples. The hall effect measurement showed that antimony oxide nanostructure thin films are p-type and gradually converted to n-type by the addition of tungsten oxide, while they are converted almost instantly to n-type by the addition of indium oxide. Different heterojunction solar cells were prepared from (Sb2O3:WO
... Show More