This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently, the beams that exposed to be cool gradually under the ambient laboratory condition, after that, the beams were loaded till failure to investigate the influence of the heating temperature on the performance during the serviceability and the failure stage. It was observed that, as the temperature increased in the internal layers of concrete, the camber of tested beams increased significantly and attained its peak value at the end of the time interval of the stabilization of the heating temperature. This can be attributed to the extra time that was consumed for the heat energy to migrate across the cross-section and to travel along the span of the beam and deteriorate the texture of the concrete causing microcracking with a larger surface area. Experimental findings showed that the load-carrying capacity of the test specimen, with the same number of incorporated concrete segments, was significantly decreased as the heating temperature increased during the fire event.
Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica
... Show MoreBackground: Echocardiography has an important role to follow up patients with Iatrogenic atrial septaldefect (IASD) and after Catheter ablation during electro-physiological study.Objectives: evaluating the impact of non-invasive Transthoracic Echocardiography (TTE) parameters(LAVI, LVEF, ASD size and E/e`) post radiofrequency ablation of left atrial arrhythmia.Patients and methods: for the evaluation of the atrial septal defect, a transthoracic echocardiography(TTE) was used in patients who underwent left atrial arrhythmia ablation, enrolled in prospective studyin the Iraqi center for cardiac diseases, in cooperation with university of Baghdad /college of medicineResults: The outcomes of the present study were assessed according to
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
In this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
In this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreThis work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia
This work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia
This paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu
... Show More