Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight concrete performed similarly to conventional concrete when used as a filler material in composite steel tube beams. The structural effects of sawdust substitution on ultimate load and initial stiffness were less substantial than the relative changes in the material properties, and the ultimate capacity of the tested samples decreased moderately as the substitution percentage of sawdust increased. Moreover, the maximum load capacity was observed to decrease by 6.43–30.71% for sawdust replacement levels between 5% and 45.1% across all tested samples. Additionally, when using lightweight concrete with 5% sawdust, the moment value of the CFST sample was reduced by 6.4%. Notably, the sawdust CFST samples exhibited a flexural behavior that was relatively comparable to that of the standard CFST samples.
The steel jetty selected for strengthening is in Baghdad city, over Tigris River, consists of 55 short spans, each of approximately 4 meters and one naviga-tional opening of 12 m. The bridge is 224 meters length and 8 meters in width. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to abnormal loads of 380 tons. A strengthening system which installed in spring 2008 was used where the main concept is to depend on added side supporting elements which impose reversal forces on the bridge to counteract most of the loads expected from the abnormal heavy loads. The bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengt
... Show MoreAbstract
Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC) on properties of composite coatings. I
... Show MoreCarbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreThe researcher aims to Diagnose the reality of research variables, strategic leadership and decision support systems, and their impact on crisis management in the General Company for Steel Industries because of their important role in preventing crises and reducing their occurrence for the research company in particular and other companies in general affiliated with the Ministry of Industry and Minerals, as well as clarifying theoretical concepts of research variables As it included the answer to questions related to the research problem, including (Is there an impact of the strategic leadership in managing crises if decision support systems are used), and the researcher adopted the descriptive and analytical approach in its comp
... Show MoreThe research aims to reveal the availability of skills to develop the tax assessor when carrying out the tax examination process. The study was conducted in the branches of the General Tax Authority in the province of Baghdad (the General Authority for Taxes, Adhamiya branch, the General Authority for Taxes, Rusafa branch, Al-Bayaa branch, New Baghdad tax branch) was approved The descriptive approach to achieve the research objectives represented by answering the following two questions: 1- What are the necessary skills that should be available in the performance of the tax examiner? 2- Are the skills of developing a tax evaluator available? The two researchers used the closed questionnaire as a tool for their research. The quest
... Show MoreThe cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98
... Show MoreIn this paper, we investigate and study quantum theoretical of quark-gluon interaction modeling in QGP matter formatted. In theoretical modeling, we can use a flavor number, strength coupling, critical energy Tc = 190 MeV, system energy (400-650)MeV, fugacity of quark and gluon, and photon energy in range of 1-10 GeV parameter to calculation and investigation spectrum of photon rate. We calculation and study the photon rate produced through bremsstrahlung processes from the stable QGP matter. The photon rate production from cg → dgy systems at bremsstrahlung processes are found to be increased with increased fugacity, decreased strength coupling, decreased the photons energy and temperature of system. The photons rate in cg → dgy is inc
... Show More