In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasing degree of polynomial solutions (n). In addition, the convergence of the proposed approximate methods is given based on the Banach fixed point theorem.
The equation of Kepler is used to solve different problems associated with celestial mechanics and the dynamics of the orbit. It is an exact explanation for the movement of any two bodies in space under the effect of gravity. This equation represents the body in space in terms of polar coordinates; thus, it can also specify the time required for the body to complete its period along the orbit around another body. This paper is a review for previously published papers related to solve Kepler’s equation and eccentric anomaly. It aims to collect and assess changed iterative initial values for eccentric anomaly for forty previous years. Those initial values are tested to select the finest one based on the number of iterations, as well as the
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
The diabetic foot is considered one of the long term diabetes complications caused by a defect in blood vessel and nerve system. This requires dealing with diabetic foot with professional medical care, so as to prevent its development in advanced stages which could end to gangrene and amputation of the foot. This study has been initiated through follow-up of twelve patients with diabetes and the presence various occlusions in lower limb artery. One patient from them was chosen for investigation, this patient has stenosis in popliteal artery and presence multiple stenosis in superficial femoral artery. This study based on analysis present case of patient and prediction for progress stenosis in superficial femoral artery till arrive semi t
... Show MoreThe aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and experimentally. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Experimentally, a model was manufactured from wood to carry out the tests. The primary objective of the experimental work was the measurements of the wake dimensions and orientation, velocity defect along the wake and the wake thickness. A blower type low speed (open jet) wind tunnel was used in the experimental work. The mean velocity at the test section was (9.3 m/s) and the Reynolds number based on the mean aerodynamic chord and the mean velocity was (0.46x105). The measurements sho
... Show More
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show MoreAbstract The study aims to clarify the value of auditing economic units and how it can be measured, which is one of the most important challenges to matching the Value Relevance of Accounting Information. The problem of the study was identified with questions that revolve around the extent to which it is possible to measure the value of auditing in Iraqi economic units and the extent to which the value of auditing affects the adequacy of accounting information. Through reviewing the studies discussing this topic, it was found that auditing can provide value through the performance of the auditor and adding value to the economic unit subject to audit. The study recommended the need to study the situational factors of auditing, whether exter
... Show MoreThe aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreDiscrete Krawtchouk polynomials are widely utilized in different fields for their remarkable characteristics, specifically, the localization property. Discrete orthogonal moments are utilized as a feature descriptor for images and video frames in computer vision applications. In this paper, we present a new method for computing discrete Krawtchouk polynomial coefficients swiftly and efficiently. The presented method proposes a new initial value that does not tend to be zero as the polynomial size increases. In addition, a combination of the existing recurrence relations is presented which are in the n- and x-directions. The utilized recurrence relations are developed to reduce the computational cost. The proposed method computes app
... Show More