The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be 14.9 %, 39.5 %, 22.8 %, 6.1 %, and 16.7 %, respectively. Additionally, to anticipate changes in groundwater WQI, IBM® SPSS® Statistics 19 software (SPSS) was used to develop an artificial neural network model (ANNM). With the application of this ANNM model, the results obtained illustrated high prediction efficiency, as the sum of squares error functions (for training and testing samples) and coefficient of determination (R2), were found to be (0.038 and 0.005) and 0.973, respectively. However, the parameters pH and Cl influenced model prediction significantly, thereby becoming crucial factors in the anticipation carried out by using ANNM model.
Abstract
This research aims to improve the provided health service level inside Baghdad hospitals and the Yarmouk educational, as well as to shed light on the reality of the health service and the quality within the major operations room in both hospitals, as the operations room represent the research community, as was the use of some quality tools Pareto and Ishikawa diagram to measure and assess the level of quality provided, and include research problem to find out what are the problems and obstacles facing the process of improving quality in both hospitals, and whether there are scientifically accurate method to assess the quality of health service in Baghdad's Yarmouk hospital and educational . Where the researcher h
... Show MoreHistory matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir mo
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreTo achieve excellence in the quality of performance in school sports administration, which has suffered a lot of problems and constraints on the administrative system, supervision and education level as well as the regulatory environment and available resources available and contribute to the provision of some processors and overcome difficulties to participate in the formation of the individual good of itself and society through sports activities. Hence the importance came this study to create a reference to the quality of the performance criteria school sports from the perspective of supervisors (specialists and technicians) in the districts of breeding Baghdad, to be of help to all those involved in school sports and maintaining an excep
... Show MoreKA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
This study is concerned with the reality of total quality management and its role in achieving the excellence performance of the employees of the Institute of Technology / Baghdad, excellence performance is described by the extent to which the organization is able to invest the effort of the human resource to achieve its Objectives by adopting the principles of Total Quality Management (TQM) according to some of its basic dimensions in proportion to the reality and Possibilities Institute, the aim is to study to know the reality of total quality management ,and indicate the levels of excellence performance in the Institute of Technology / Baghdad,
... Show MoreExisting leachate models over–or underestimates leachate generation by up to three orders of magnitude. Practical experiments show that channeled flow in waste leads to rapid discharge of large leachate volumes and heterogeneous moisture distribution. In order to more accurately predict leachate generation, leachate models must be improved. To predict moisture movement through waste, the two–domain PREFLO, are tested. Experimental waste and leachate flow values are compared with model predictions. When calibrated with experimental parameters, the PREFLO provides estimates of breakthrough time. In the short term, field capacity has to be reduced to 0.12 and effective storage and hydraulic conductivity of the waste must be increased to
... Show More