Although its wide utilization in microbial cultures, the one factor-at-a-time method, failed to find the true optimum, this is due to the interaction between optimized parameters which is not taken into account. Therefore, in order to find the true optimum conditions, it is necessary to repeat the one factor-at-a-time method in many sequential experimental runs, which is extremely time-consuming and expensive for many variables. This work is an attempt to enhance bioactive yellow pigment production by Streptomyces thinghirensis based on a statistical design. The yellow pigment demonstrated inhibitory effects against Escherichia coli and Staphylococcus aureus and was characterized by UV-vis spectroscopy which showed lambda maximum of 449. The FTIR and GC-MS analysis showed that the colorings in this type of product are due to the presence of chromo peptides. Furthermore, the GC-MS measurement determined the presence of 4 compounds, as it gave 4 different retention times within this yellow pigment, but with different percentages, except for the compound BHT when the retention time was 17.86 minutes. Starch casein broth (SCB) was selected as an optimized medium for yellow pigment production. The optimization process was first started with one factor at time method, revealing that maltose and casein were the best carbon and nitrogen sources. Response surface methodology based on central composite design was conducted to obtain the optimal combinations of maltose and casein concentrations, pH, and inoculum size for maximum production of yellow pigment. The results showed that casein was the most effective parameter with F-value 393.1 and the model exhibited good fitting with a correlation coefficient of 0.946. Moreover, the actual maximum yellow pigment product 0.80 nm which aggregated with a predicted value 0.835 nm at maltose concentration 8 g/L, casein 5 g/L, KNO3 0.01 g/L, pH 6 and inoculum size 5%.
This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreOrthogonal Frequency Division Multiplexing (OFDM) is an efficient multi-carrier technique.The core operation in the OFDM systems is the FFT/IFFT unit that requires a large amount of hardware resources and processing delay. The developments in implementation techniques likes Field Programmable Gate Array (FPGA) technologies have made OFDM a feasible option. The goal of this paper is to design and implement an OFDM transmitter based on Altera FPGA using Quartus software. The proposed transmitter is carried out to simplify the Fourier transform calculation by using decoder instead of multipliers. After programming ALTERA DE2 FPGA kit with implemented project, several practical tests have been done starting from monitoring all the results of
... Show MoreThis paper aims to improve the voltage profile using the Static Synchronous Compensator (STATCOM) in the power system in the Kurdistan Region for all weak buses. Power System Simulation studied it for Engineers (PSS\E) software version 33.0 to apply the Newton-Raphson (NR) method. All bus voltages were recorded and compared with the Kurdistan region grid index (0.95≤V ≤1.05), simulating the power system and finding the optimal size and suitable location of Static Synchronous Compensator (STATCOM)for bus voltage improvement at the weakest buses. It shows that Soran and New Koya substations are the best placement for adding STATCOM with the sizes 20 MVAR and 40 MVAR. After adding STATCOM with the sizes [20MVAR and 40MV
... Show MoreThis work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.
Objectives: To find out the effect of l-hydroxyphenazine (1-HP) on viability of T-lymphocytes and the reflects of this
effect on experimental hyadatidosis on hydatid cyst protoscoleces infectivity in vivo.
Methodology: Four groups of white male /ه/mice were experimentally infected with four concentrations of (1-HP)
with challenge dose of 2000 protoscoleces /1 ml with negative (9.8.5) and positive (P.H.A) control groups.
Results: It has been found that the higher concentrations (75,100) 1101/111 of the (1-HP) causes significant
decrement in the lymphocytes viability in comparison with negative and positive control groups. (060.01).
Recommendations: The study recommended using concentrations lower than 25 pmole Iml which
Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreThis study was aimed to investigate the effect of essential oil extracted from the yellow peels of Citrus aurantium on the growth of four species of fungi: Penicillium expansum, Penicillium oxalicum, Fusarium oxysporum and Fusarium proliferatum and effect of one fungicide: Aliette (fosetyl-aluminum) against these fungi. The results showed that the essential oil of C. aurantium inhibited the radial growth of P. oxalicum at concentration 4.5% while P. expansum and F. oxysporum at concentrations 5% and F. proliferatum at concentrations 5.5% additionally the one fungicide tested showed inhibitory effect on radial growth of these fungi. So that there is a negative relationship between the increasing of concentration and radial growth of fungi.
Background: COVID-19 is a disease that started in Wuhan/China in late 2019 and continued through 2020 worldwide. Scientists worldwide continue to research to find vaccines, treatments, and medication for this disease. Studies also conenue to find the pathogenicity and epidemiology mechanisms. Materials and Methods: In this work, we analyzed cases obtained from Alshifaa center in Baghdad/Iraq for 23/2/2020-31/5/2020 with total instances of 797, positive cases of 393, and death cases of 30. Results: Results showed that the highest infection cases were among people aged between 41-45. Also, it was found that males' number of cases was more than females. In contrast, death cases were significantly higher in males than females. It was not
... Show MoreElectrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show More