Preferred Language
Articles
/
d4bef4YBIXToZYALhoy7
Proposed Algorithm for Gumbel Distribution Estimation
...Show More Authors

Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical features. The objective of this paper is thus to propose a new algorithm where it allows getting the estimation of the parameters of Gumbel probability distribution directly. Furthermore, it overcomes the mathematical difficulties in this matter without need to the derivative of the likelihood function. Taking simulation approach under consideration as empirical experiments where a hybrid method performs optimization of these three traditional methods. In this regard, comparisons have been done between the new proposed method and each pair of the traditional methods mentioned above by efficiency criterion Root of Mean Squared Error (RMSE). As a result, (36) experiments of different combinations of initial values of two parameters (λ: shift parameter and θ: scale parameter) in three values that take four different sample sizes for each experiment. To conclude, the proposed algorithm showed its superiority in all simulation combinations associated with all sample sizes for the two parameters (λ and θ). In addition, the method of Moments was the best in estimating the shift parameter (λ) and the method of Maximum Likelihood was in estimating the scale parameter (θ).

Crossref
Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Matter density distribution and longitudinal form factors for the ground and excited states of 17Ne exotic nucleus
...Show More Authors

The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Pre-Test Single and Double Stage Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.

View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
...Show More Authors
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Baghdad Science Journal
The Ecology and geographical distribution for the species of the genus Salvia L. of labiatae in Iraq
...Show More Authors

The study included general survey of some districts of Iraq in order to determinate new distribution areas for 33 species of the genus salvia L. ,new collections obtained , new locations for many species recorded. Observed specimens in most Iraqi herbaria were studies and identified. ,the flowering period were also studied

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution for Progressively Censoring Data with S- Function about COVID-19
...Show More Authors

The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Branch and Bound Algorithm with Penalty Function Method for solving Non-linear Bi-level programming with application
...Show More Authors

The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.

View Publication
Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm
...Show More Authors

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jul 08 2017
Journal Name
Neural Computing And Applications
A new algorithm of modified binary particle swarm optimization based on the Gustafson-Kessel for credit risk assessment
...Show More Authors

View Publication
Scopus (34)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref