In the reverse engineering approach, a massive amount of point data is gathered together during data acquisition and this leads to larger file sizes and longer information data handling time. In addition, fitting of surfaces of these data point is time-consuming and demands particular skills. In the present work a method for getting the control points of any profile has been presented. Where, many process for an image modification was explained using Solid Work program, and a parametric equation of the profile that proposed has been derived using Bezier technique with the control points that adopted. Finally, the proposed profile was machined using 3-aixs CNC milling machine and a compression in dimensions process has been occurred betwe
... Show MoreThe present study aims to investigate the long-term histopathological, and physiological effects of different concentrations of a commercially available energy drink (Tiger) on liver and kidney of young mice. Sixteen Balb/c male mice,6 -week old, were divided into 4 groups (n=4). Two groups consumed the energy drink at a concentration of 28µl energy drink/ml water. One group were killed after 10 days (T1), another group were killed after 20 days (T2). Other group of mice consumed the energy drink at a final concentration of 14µl/ml for 20 days (T3). The last group was provided only with water and served as control. Mice of all groups drank around 3 ml per day. The histopathological study on liver of treated groups showed many changes s
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreFace Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreEnvironmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant
... Show MoreKnowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the format
... Show MoreThis study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show More