Cooling towers is one of the most important unit in industry, they are used to dispose heat from cooling media used in the integrated units. The choice of the cooling media plays recently an important rule due to fresh-water scarcity. The use of saline as a cooling media become of growing interest, but the corrosion problem has to be taken in consideration. In this study the simultaneous effect of cooling tower operation parameters on the corrosion rate of mild-steel is considered. The role of NaCl content is found to be pronounced more than the working solution temperature and flowrate. The corrosion of mild-steel in these studied factors had shown an interesting result especially with the NaCl% content. Firstly, there was an increase in the corrosion rate with increasing the salt content to 3.5% four times compared to that of 0%, but after a critical point (3.5%) the corrosion rate had been decreased to reach a level lower than that of pure water. While increasing the solution flowrate to 2.5 l/min and the temperature to 50°C will increase the corrosion rate by 25 and 20% respectively. From the results, it is obvious that the high concentration (>10%) of NaCl will inhibit the corrosion rate of mild-steel significantly and this prologue the gate to the use of saline instead of fresh water without hesitation
Experimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf
Iraqi bentonite is used as main material for preparing ceramic samples with the additions of alumina and magnesia. X-ray diffractions analyses were carried out for the raw material at room temperature. The sequence of mineral phase's transformations of the bentonite for temperatures 1000 ,1100 ,1200 and 1250 ºC reflects that it finally transformed in to mullite 39.18% and cristobalite 62.82%. Samples of different weight constituent were prepared. The effect of its constitutional change reveals through its heat treatments at 1000,1100,1200,1250and 1300ºC .The samples of additions less than 15% of alumina and magnesia could not stand up to 1300ºC while the samples of addition more than 15% are stable .That is shown by analy
... Show MoreThe loose sand is subject to large settlement when it is exposed to high stresses. This settlement is due to the nature of the high drainage of sand, which displays foundations and constructions to a large danger. The densification of loose sandy soils is required to provide sufficient bearing capacity for the structures. Thus soil stabilization is used to avoid failure in the facilities. Traditional methods of stabilized sandy soil such as fly ash, bituminous, and cement often require an extended curing period. The use of polymers to stabilize sandy soils is more extensive nowadays because it does not require a long curing time in addition to being chemically stable. In this study, the effect of adding different percent
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreThe present researchers are trying to enhance the properties of paper sheet that used widely in many fields such as printing and packaging. The enhancement of paper quality is also possible to preserve paper documents of all kinds, as they are the true record, full of the history, achievements of the human being and the intellectual and cultural of the country. It is possible to improve its physical and mechanical properties and preserve them from damage through the use of some solutions of polymeric adhesives, which act as protective barriers against water and moisture penetration. The paper also has the advantage of porosity, which has been overcome by using three types of polymeric adhesives (Nitro Cellulose, Polyvinyl alcohol acetate, a
... Show MoreThe global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap
... Show MoreExperimental research was carried out to investigate the effect of fire flame (high temperature) on specimens of short columns manufactured using SCC (Self compacted concrete). To simulate the real practical fire disasters, the specimens were exposed to high
temperature flame, using furnace manufactured for this purpose. The column specimens were cooled in two ways. In the first the specimens were left in the air and suddenly cooled using water, after that the specimens were loaded to study the effect of degree of
temperature, steel reinforcement ratio and cooling rate, on the load carrying capacity of the reinforced concrete column specimens. The results will be compared with behaviour of columns without burning (control specime
Grass carp at a weight of 34.68 + 2 g were gradually exposed to four saline concentrations: tap water (0.1), 3, 6, 9, and 12 gm/litter, and the first concentration represented a control treatment. Fish were fed on a diet with a protein content of 30% for ten weeks. Results of the growth experiment showed that the feed conversion rate was 2.46, 3.58, 4.84, 6.77, and -8.56 in the first to fifth treatments, respectively, and the rate feed conversion efficiency was 40.65, 27. 93, 20.66, 14.77 and 11.68 %, while the protein intake was 22.38, 20.44, 18.86, 17.47 and 16.56 g in salt concentrations of 0.1, 3, 6, 9 and 12 g/L, respectively. In another experiment to study the effect of salt acc
Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce