The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrystalline nature with tetragonal crystal system.The result was that the structure properties of MawsoniteCu6Fe2SnS8thin films affected by laser irradiation where the XRD measurement the result was the grain size and stress values that decrease with increasing irradiation time, whereas the values of intensity , FWHM and d-spacing for the largest peak increase with a slight increase with the increase in the irradiation time and slight increase in growth of some peaks with increasing irradiation time.. While not affected EDX and FTIR measurements by laser irradiation, the result was the same for all samples.As for AFM measurement showed that the surface roughness, root mean square and average diameter values that decrease with increasing irradiation time. Note from SEM measurement that the surface topography affected with different time of irradiation red laser. This result due to laser irradiation worked like annealing temperature to enhance the crystallization of the deposited films. As the results showed that the laser irradiation method has a clear change in the structure properties with less time and energy than the traditional annealing methods which is the aim of this study. Keywords: red laser irradiation, semi-computerized spray technique, Structure properties of Mawsonite, Cu6Fe2S8Sn.
Aluminum oxide thin films were prepared by dc reactive sputtering technique using different mixing ratios of argon and oxygen gases (90:10, 70:30, 50:50, 30:70, and 10:90). These films were characterized to introduce their crystalline structures, surface morphology, and elemental composition. A progressive transition occurs from a predominantly amorphous to a highly crystalline Al2O3 film as the oxygen content in the Ar:O2 gas mixture is increased. Increasing the oxygen content leads to a progressive decrease in surface roughness, resulting in smoother and more uniform films with finer granular features. The oxygen-rich environments yield the smoothest surfaces, while argon-rich environments result in significantly rougher surfaces. These f
... Show Morethirty adult NewZealand rabbits used in this study, they were divided in to two groups (control and treaded with Helium — Neon laser). A square skin flap done on the medial aspect of the auricle of both sides, a square piece of cartilage incised, pealed out from each auricle and fixed in the site of the other, then the flaps sutured .The site of the operation in the rabbits of the treated group were irradiated using a Helium —Neon laser with (5mw) power for (10 days) began after the operation directly, (3 rabbits) from each group used for collection of specimens for histopathological examination at the weeks (1,2,3,4, & 6) weeks post the operation .The results revealed Early invasion of the matrix with elastic fibers which continue to t
... Show MoreIn this paper, we used two monomers, 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) and m,m'-diaminobenzophenone (m, m’-DABP), to produce polyamide acid and then converted it to polyimide (PI). The effects of phosphoric acid (H3PO4) molarity (1, 2, and 3 M) on the structural, thermal, mechanical, and electrical characteristics of the polyimides/polyaniline (PI/PANI) nanocomposites were studied. Two sharp reflection peaks were developed by the addition of PANI to PI. When 3 M H3PO4 is added, the crystalline sharp peak loses some of its intensity. The complex formation of PI/PANI-H3PO4 was confi
... Show MoreThe aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.
Chalcopyrite thin films were one-step potentiostatically deposited onto stainless steel plates from aqueous solution containing CuSO4, In2(SO4)3 and Na2S2O3.The ratio of (In3+:Cu2+) which involved in the solution and The effect of cathodic potentials on the structural had been studied. X-ray diffraction (XRD) patterns for deposited films showed that the suitable ratio of (In3+:Cu2+) =6:1, and suitable voltage is -0.90 V versus (Ag/AgCl) reference electrode
Spin coating technique has been applied in this work to prepared Xerogel films doped with Rhodamine 6G laser dyes. The solid host of laser dye modifies its spectroscopic properties with respect to liquid host. During the spin coating process the dye molecules suffer from changing their environment. The effects of three parameters were studied here: the spinning speed, multilayer coating and formaldehyde addition
Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreIodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show More