Abstract: Chalcones were used to synthesis series of 2-pyrazoline derivatives and evaluated their antimicrobial and anti-inflammatory activities (E)-1,3-diphenylprop-2-en-1-one (1-5) were synthesized by Claisen-Schmidt Condensation method through the reaction of acetophenone with five various para substituted benzaldehyde in presence of KOH, the reaction monitoring by TLC and the result intermediates were checked by melting point and FT-IR Various 2-Pyrazoline derivatives were prepared by one pot reaction that involved the refluxing of (E)-1,3-diphenylprop-2-en-1-one (1–5) and Hydrazine monohydrate in the presence of glacial acetic acid for 24 hours at a temperature of (45–50) °C for a duration 24 hrs. pyrazoline II (1-5) was formed, then antioxidant compound (guaiacol) was added reflex for 24-48 hours, monitoring by TLC to ensure the reaction was completed. The final mixture was cooled in ice-water bathe until the formation of crystals were completed, added to crushed ice, kept in refrigerator overnight, filter, recrystallized and then dried to get 2-pyrazoline derivatives, IIIa, IIIb, IIIc, IIId and, IIIe. based on the spectral data 2-pyrazoline derivatives structures have been confirmed. The synthesized compounds were screened for their antimicrobial activity and anti-inflammatory.
The present study deals with the synthesis of four different azo-azomethine derivatives; this is done by two steps; the first step is diazotization of sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, and sulfadiazine) separately, followed by the second step; the coupling reaction of diazotized compounds with isatin bis-Schiff base named 3-((4-nitrobenzylidene) hydrazono)indolin-2-one. The later one (bis-Schiff base) was synthesized by the reaction of 3-hydrazono-indolin-2-one with p-nitrobenzaldehyde. The chemical structures of newly synthesized compounds were approved on the basis of their FTIR, 1H-NMR, and CHNS elemental analysis data results. The synthesized azo compounds were tested in vitro for their antimicrobial potentia
... Show MoreNew schiff bases series (VIII) a-e and 1,3-thiazolidin-4-one derivatives (IX) a-e containing the 1,2,4-triazole and 1,3,4-thiazazole rings were synthesized and screening their biological activities. These compounds were identified via Fourier transform infrared (FT-IR) spectra, some via Proton nuclear magnetic resonance (1H-NMR) and mass spectra. The biological results indicated that all of these compounds did not reveal antibacterial effectiveness against (Escherichia coli and Klebsiella species) (G-). Some of these compounds showed moderate antibacterial activity against (Staphylococcus aureus, and Staphylococcus epidermidis) (G+), and all compounds exhibited moderate activity against Candida albicans.
In this research, new compounds were synthesized via the reaction of dichloroacetic acid with two moles of piperidine. The novel acid 1 was converted to its ester 2. Acid hydrizide 3 was prepared by the reaction of hydrazine hydrate with new ester 2, which was later used to prepare derivatives of Schiff bases 4-13. In the last step, Schiff bases and thioglycolic acid were reacted to give thiazolidine derivatives 14-23. All these compounds were diagnosed using melting points, FTIR, 1HNMR and mass spectroscopy. Scheme 1 shows all the synthesized compounds' reaction steps and structures. Keywords: Thiazolidine; Schiff bases; biological activity; piperidine; dichloroacetic acid.
The present work involved preparation of new hetro cyclic polyacrylamides (1-9) using reaction of polyacryloyl chloride with 2-aminobenzothiazole which prepeard by thiocyanogen method in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating. The structure confirmation of polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy.Other physical properties including softening and melting points, and solubility of the polymers were also measured.
In this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreIn this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreThe amino thiadiazole [I] on treatment with aromatic aldehydes yielded Schiff bases [IIa-c], which cyclized to thiazolidinone [IIIa-c] derivatives by reaction with thioglycolic acid. Reaction of carbon disulfide and methyl iodide with [I] gavedithiomethyl [IV] which on treatment with o-phenylenediamine gave the condensed N-Imidazolythiadiazolylamine [V], However, reaction of [I] with phenylisocyanate and phenylisothiocyanate afforded the carbamideand carbothiamide derivatives [VI. VII] ac. The structure of these compounds was characterized from their melting point, FTIR spectroscopy and elementalanalysis