The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of this paper is to suggest a new hybrid estimator obtained by an ad-hoc algorithm which relies on data driven strategy that overcomes outliers. While the minor goal is to introduce a new employment of an unweighted estimation method named "winsorization" which is a good method to get robustness in regression estimation via special technique to reduce the effect of the outliers. Another specific contribution in this paper is to suggest employing "Kernel" function as a new weight (in the scope of the researcher's knowledge).Moreover, two weighted estimations are based on robust weight functions named "Cauchy" and "Talworth". Simulations have been constructed with contamination levels (0%, 5%, and 10%) which associated with sample sizes (n=40,100). Real data application showed the superior performance of the suggested method compared with other methods using RMSE and R2 criteria.
In general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show MoreThe Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreRecently, the development and application of the hydrological models based on Geographical Information System (GIS) has increased around the world. One of the most important applications of GIS is mapping the Curve Number (CN) of a catchment. In this research, three softwares, such as an ArcView GIS 9.3 with ArcInfo, Arc Hydro Tool and Geospatial Hydrologic Modeling Extension (Hec-GeoHMS) model for ArcView GIS 9.3, were used to calculate CN of (19210 ha) Salt Creek watershed (SC) which is located in Osage County, Oklahoma, USA. Multi layers were combined and examined using the Environmental Systems Research Institute (ESRI) ArcMap 2009. These layers are soil layer (Soil Survey Geographic SSURGO), 30 m x 30 m resolution of Digital Elevati
... Show MoreIn this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.
The purpose of this article is to improve and minimize noise from the signal by studying wavelet transforms and showing how to use the most effective ones for processing and analysis. As both the Discrete Wavelet Transformation method was used, we will outline some transformation techniques along with the methodology for applying them to remove noise from the signal. Proceeds based on the threshold value and the threshold functions Lifting Transformation, Wavelet Transformation, and Packet Discrete Wavelet Transformation. Using AMSE, A comparison was made between them , and the best was selected. When the aforementioned techniques were applied to actual data that was represented by each of the prices, it became evident that the lift
... Show MoreThis article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show More