Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the reactant solutions that were used is in close agreement with the elemental analysis that was obtained from EDX showing that the composition was as expected. Manganese ferrite showed a decrease in magnetic parameters on magnesium doping, which was further enhanced in (Ni,Co)xMn0.25-xMg0.75Fe2O4 nanoparticles upon replacement of nonmagnetic manganese ions for nickel and cobalt ions. Results indicated that Ni-Co-Mn-Mg ferrite nanoparticles’ crystal morphology, structural, and magnetic properties were significantly influenced by the amounts of nickel and cobalt content.
A modified chemical method was used to prepare titanium dioxide nanoparticles (TiO2 NPs), which were diagnosed by several techniques: X-ray diffraction, Fourier transform infrared, field emission scaning electron microscopy, energy disperse X-ray, and UV-visible spectroscopy, which proved the success of the preparation process at the nanoscale level. Where the titanium oxide particles have an average particle size equal to 6.8 nm, titanium dioxide particles were used in the process of adsorption of Congo red dye from its aqueous solutions using a batch system. The titanium oxide particles gave an adsorption efficiency of Congo red dye up to more than 79 %. The experimental data of the adsorption process were analyzed with kinetic models and
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreGalantamine was isolated from the bulb part of Narcissus jonquilla L. plant cultivated in Iraq. The compound was identified by different chemical analysis like: Fourier Transforms Infrared spectra (FTIR), High Performance Liquid Chromatography (HPLC) and mass spectroscopy and 1H-NMR.
The porosity of materials is important in many applications, products and processes, such as electrochemical devices (electrodes, separator, active components in batteries), porous thin film, ceramics, soils, construction materials, ..etc. This can be characterized in many different methods, and the most important methods for industrial purposes are the N2 gas adsorption and mercury porosimetry. In the present paper, both of these techniques have been used to characterize some of Iraqi natural raw materials deposits. These are Glass Sand, Standard Sand, Flint Clay and Bentonite. Data from both analyses on the different types of natural raw materials deposits are critically examined and discussed. The results of specific surface are
... Show MoreObjective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreMetal complexes of Cu (II), Fe (III) and Mn (II) with Quinaldic acid (L1) and 1, 10-Phenathroline (L2) are synthesized and characterized by standaral physic- chemical procedures (element analysis, metal analysis, FTIR, Uv-Vis, magnetic moment and conductometeric measurements). On the base of these studies, mononuclear and six coordinated octahedral geometry and nonelectrolyte of these complexes have been proposed. The standard heat of formation (?Hºf) and binding energy (?Eb) for the free ligands and their complexes are calculated by using the PM3 method at 273K of Hyperchem.-8 program. The complexes are more stable than their ligands. Moreover, the electrostatic potential of free ligands are measured to investigate the reactive site of th
... Show MoreThe reaction of poly (vinyl alcohol) (PV A) with Urea in (DMSO) resulted in uerthanised oxim, wr,ich reacted with diacetylmonoxime in a (DY.ISOfmethanol) to give anew type (N2) polymeric bidentate imine oxime ligand [HL], The ligand was reacted with MCh (where M= Co, Cu, and Hg). Under reflux in a (DMF/Methanol) mixture with (I:1) ratio to give Complexes of the general formula [M (T.)2]X, (where M= Co,Hg, Cu). All .:ompouncs have been characterized by spectroscopic methods [IR, U.V.-Vis, A tomi<;absorption] microanalysis along with conductivity measurements, from the above:: data the proposed molecular structure for Co,Cu, and Hg is a distorted. Tetrahedml