Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitated the characterization of (CAC). The results showed the CAC has non-uniform morphological features with different shapes of its active sites. The prepared CAC was utilized in adsorption of sulfur in its highly complex form of dibenzothiophene (DBT). Particular adsorption parameters of contacting time, temperature, and adsorbent dose were optimized to select the best conditions. These certain conditions are then applied in the adsorption of different DBT concentrations. The maximum removal of DBT reached around 83% at optimal conditions of contacting time (30 min), temperature (60 °C), and adsorbent dose (3 g L-1). The removal efficiency was significantly increased by decreasing the initial concentration of DBT. The experimental data fitted well with the Freundlich isotherm model compared with the Langmuir one. The maximum capacity of CAC for adsorption of DBT at equilibrium was 833.3 mg g-1 at 60 °C. The findings of this research introduce the CAC as a feasible adsorbent for removal DBT from simulated liquid petroleum fuels.
Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreIn this work involved prepared of several new 1-cyclopentene-1,2-dicarboxylimide linked to oxadiazole and benzothiazole moiety were synthesized by two steps: The first step 2-amino-substituted-1,3,4-oxadiazoles and substituted-2-aminobenzothiazole were reaction with 1-cyclopentene-1,2-dicarboxyl anhydride producing N-( 5- substituted-1,3,4-oxadiazole-2-yl)-1-cyclopentene-1,2-dicarboxyl amic acids and N-(Substitutedbenzothiazole-2-yl)-1-cyclopentene-1,2-dicarboxyl amic acids which in turn were dehydrated in the second step via fusion method to afford he desirable N-(5-substituted-1,3,4-oxadiazole-2-yl)-1-cyclopentene-1,2-dicarboxylimides and N-(Substituted benzothiazole-2-yl)1-cyclopentene-1,2-dicarboxylimides respectively. Struct
... Show More4-((2-hydroxy-3,5-dinitrophenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was produced through the reaction of diazonium salt from 4-amino antipyrine with 2,4-dinitrophenol. This ligand is examined by (UV-Vis, FTIR,1H,13CNMR, and LC-Mass) spectral techniques and micro elemental analysis (C.H.N.O). Co(II), Ni(II), Cu(II), and Zn(II) complexes were also performed and depicted. Metal chelates were distinguished by utilizing flame atomic absorption, infrared analysis, and elemental, visible, as well as ultraviolet spectroscopy, in addition to conductivity and magnetic quantification. Methods of mole ratio and continuous contrast have been studied to determine the nature of the compounds. Beer's law was followed throughout a co
... Show MoreThe synthesis of new benzodiazepine, imidazole, isatin, maleimide, pyrimidine and 1,2,4-triazole derived from 2-amino-4-hydroxy-1,3,5-triazine, via its cyclocondensation reaction with different organic reagents, is described. FT-IR, 1H-NMR and as well as 13C-NMR spectra disclosed the structures of the precursors and heterocyclic derivatives formed.
The study of biopolymers and their derivative materials had received a considerable degree of attention from researchers in the preparation of novel material. Biopolymers and their derivatives have a wide range of applications as a result of their bio-compatibility, bio-degradability and non-toxicity. In this paper, chitosan reacted with different aldehydes(2,4 –dichloro- benzaldehyde or 2-methyl benzaldehyde), different ketones (4-bromoacetophenone or 3-aminoacetophenone) to produce chitosan schiff base (1-4) . Chitosan schiff base (1-4) reacted with glutaric acid or adipic acid in acidic media in distilled water according to the steps of Fischer and Speier to produce compounds (5-12)
... Show Moreليكاند ازو جديد. 4-((3-formyl-2-hydroxyphenyl)diazenyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide, الليكاند المحضر استعمل لتحضير معقدات من ايونات معادن مختلفة مثل الكروم الثلاثي والمنغنيز الثنائي والحديد الثلاثي والبلاديوم الثنائي بنسب مولية (1:1) ( ليكاند : فلز) نتائج التشخيص للمركبات يتقنيات مطيافية الاشعة فوق البنفسجية الاشعة تحت الحمراء الرنين النووي المغناطيسي البروتوني والكربوني وطيف الكتلة والتحليل الدقيق للعناصر ومحتوى الفلز وال
... Show MorePoly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free