In this thesis, we study the topological structure in graph theory and various related results. Chapter one, contains fundamental concept of topology and basic definitions about near open sets and give an account of uncertainty rough sets theories also, we introduce the concepts of graph theory. Chapter two, deals with main concepts concerning topological structures using mixed degree systems in graph theory, which is M-space by using the mixed degree systems. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are defined and studied. In chapter three we study supra-approximation spaces using mixed degree systems and primary object in this chapter are two topological spaces, namely o-space and i-space. In chapter four we introduce two new approximation operators using mixed degree systems and comparing of them and we find the accuracy of the second new approximation operator is more thin the first new approximation operator. For reason we study in detail the properties of the second new operator. Finally, in chapter five we introduce new generalization of rough set theory using a finite number of graphs by using the second new approximation operators in the preiow chapter. Several characterizations and properties of these concepts are obtained.
The research discusses the formal transformation in urban structure, all the cities around the world have undergone a series of formal transformations, resulting in radical transformations to their functions. And to calculate this transformation the descriptive analytical method was applied to this research. First, local urban management data and Landsat-9 visual data were used after processing by GIS. Then, the data were processed mathematically based on their engineering sequences. The aims of this research were as follows: to explore the formal transformations in cities, their dimensions and their consequences and impacts; to identify the underlying causes of their occurrence by deriving realistic results from trends in such degrees of t
... Show MoreThe aim of this paper is to prove some results for equivalence of moduli of smoothnes in approximation theory , we used a"non uniform" modulus of smoothness and the weighted Ditzian –Totik moduli of smoothness in by spline functions ,several results are obtained .For example , it shown that ,for any the inequality , is satisfied ,finally, similar result for chebyshev partition and weighted Ditzian –Totik moduli of smoothness are also obtained.
The chemical properties of chemical compounds and their molecular structures are intimately connected. Topological indices are numerical values associated with chemical molecular graphs that help in understanding the physicochemical properties, chemical reactivity and biological activity of a chemical compound. This study obtains some topological properties of second and third dominating David derived (DDD) networks and computes several K Banhatti polynomial of second and third type of DDD.
Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreThe aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.
We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal
... Show MoreIn this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally s
... Show MoreIn the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
Owing to their remarkable characteristics, refractory molybdenum nitride (MoN x )-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoN x materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies
... Show MoreOwing to their remarkable characteristics, refractory molybdenum nitride (MoNx)-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoNx materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies on
... Show More