new six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreIn this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show MoreQ-switch Nd: YAG laser of wavelengths 235nm and 1,460nm with energy in the range 0.2 J to 1J and 1Hz repetition rate was employed to synthesis Ag/Au (core/shell) nanoparticles (NPs) using pulse laser ablation in water. In this synthesis, initially the silver nano-colloid prepared via ablation target, this ablation related to Au target at various energies to creat Ag/Au NPs. Surface Plasmon Resonance (SPR), surface morphology and average particle size identified employing: UV-visible spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance spectra of Ag NPs and Ag/Au NPs showed sharp and single peaks around 400nm and 410nm, respec
Background: A great dental and biomedical interest had been paid to silver nanoparticles because of their antimicrobial activity. Objective: To evaluate the antimicrobial and cytotoxic activity of a newly developed Nano-silver fluoride that was synthesized from moringa oleifera leaf extract against S. mutants. Material and method: The green synthesis method was used to prepare Nano-silver fluoride from moringa oleifera leaf extract. The minimum inhibitory concentration and the minimum bactericidal concentration were evaluated using brain heart infusion plates, while the cytotoxicity was evaluated by the hemolytic activity. Results: Nano-silver fluoride had a bactericidal and bacteriostatic effect (MIC was 60 ppm and MBC was 120 pp
... Show MoreIn the present work, silver nanoparticles were prepared. Nonlinear optical properties and
optical limiting of silver nanoparticles were investigated.Standard chemical synthesis method was used at
diffrent weight ratio(0.038, 0.058 and 0.078) of silver nitrate. Several testing were done to obtain the
characteristics of the sample. Z-Scan experiments were performed using 30 ns Q-switched Nd:YAG
laser at 1064 nm and 532 nm at different intensities. The results showed that the nonlinear refractive
index is directly proportional to the input intensities, which caused by the self-focusing of the material.
In addition, the optical limiting behavior has been studied. The results showed that the sample could be
used as an opt
The wound healing process is incredibly intricate, consisting of a series of cellular activities. Although, this complex process has the potential to degenerate and result in chronic wound problems that are resistant to biological healing mechanisms. Nanoparticles can help to reduce inflammation, promote tissue regeneration, and accelerate wound healing. The proteolytic enzymes are believed to break down proteins and other molecules that can cause inflammation and impede the healing process. Wound was created in vivo using adult mice, and by taking blood samples the hematological parameters were evaluated to detected the effects of bromelain, silver nanoparticles and Br-AgNPs. The results shows an increased in white blood cells WBC, RBC, MC
... Show MoreIn recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate
... Show MoreThis research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Stro
... Show More