Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreIn this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
In this paper, an exact stiffness matrix and fixed-end load vector for nonprismatic beams having parabolic varying depth are derived. The principle of strain energy is used in the derivation of the stiffness matrix.
The effect of both shear deformation and the coupling between axial force and the bending moment are considered in the derivation of stiffness matrix. The fixed-end load vector for elements under uniformly distributed or concentrated loads is also derived. The correctness of the derived matrices is verified by numerical examples. It is found that the coupling effect between axial force and bending moment is significant for elements having axial end restraint. It was found that the decrease in bending moment was
in the
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreThe purpose of this analytical study is to showcase how Russia Today and U.S Alhurra channels addressed the Palestinian Cause between the periods of mid-2014 and mid-2015. In addition, the study aims to highlight the “significance levels” of the Palestinian Cause in both channels.
The study is based on a rigorous survey methodology adopted by the researcher and based on the content analysis of Russia Today’s “Panorama” talk show and Alhurra’s “Free Hour show”.
First level examination included the content analysis of 398 talk show episodes broadcasted by both channels during the period through which the study was conducted.
Second level examination featured a detailed analysis of 38 episodes covering Palestinian A
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.