Preferred Language
Articles
/
cReSyI8BVTCNdQwCs310
Some of Parametric and Non Parametric Estimations for Circular Regression Model via Simulation
...Show More Authors

Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage model (Circular Shrinkage Method) (SH) This method is a method proposed by the researcher, and the non-educational model is the circular positional regression model Local Linear Circular Regression (LL), and the Mean Circular Error (MCE) criterion was used to compare the three models. The results were shown on the experimental side (simulation) using inverse method (inverse method) and using R language software, in simulation experiments (9 experiments) and for all default values, Lack of preference for teacher models compared to non-teacher models.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2009
Journal Name
مجلة العلوم الاحصائية
Robust Estimator for Semiparametric Generalized Additive Model
...Show More Authors

Generalized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.

View Publication Preview PDF
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental Investigation for the Removal of Toxic Gases from Vehicle Exhaust using Non-Thermal Plasma
...Show More Authors

In this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use Of Genetic Algorithm In Estimating The Parameter Of Finite Mixture Of Linear Regression
...Show More Authors

The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To

... Show More
View Publication
Crossref
Publication Date
Thu Oct 02 2025
Journal Name
Al-rafidain University College For Sciences
“Simple Regression Analysis by using Linear Programming Technique and illustration of Absolute Residuals method with another Estimation Techniques”
...Show More Authors

This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Jordan Journal Of Physics
Theoretical Simulation of Backscattering Electron Coefficient for SixGe1-x/Si Heterostructure as a Function of Primary Electron Beam Energy and Ge Concentration
...Show More Authors

Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some well- Known methods to estimate the parameter of the proposed method of measurement and the reliability of the distribution function with two parameters Rally by simulation
...Show More Authors

 

 

Abstract

            Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Alexandria Engineering Journal
Employing Sisko non-Newtonian model to investigate the thermal behavior of blood flow in a stenosis artery: Effects of heat flux, different severities of stenosis, and different radii of the artery
...Show More Authors

View Publication
Scopus (25)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2013
Journal Name
Mathematical Problems In Engineering
CFD analysis of Heat transfer and friction factor characteristics in a circular tube fitted with Quadrant-cut twisted tape inserts
...Show More Authors

Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Branch and Bound Algorithm with Penalty Function Method for solving Non-linear Bi-level programming with application
...Show More Authors

The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.

View Publication
Crossref
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Gas Lift Optimization for Zubair Oil Field Using Genetic Algorithm-Based Numerical Simulation: Feasibility Study
...Show More Authors

The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio

... Show More
View Publication
Crossref (1)
Crossref