Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and t
... Show MoreThe most popular medium that being used by people on the internet nowadays is video streaming. Nevertheless, streaming a video consumes much of the internet traffics. The massive quantity of internet usage goes for video streaming that disburses nearly 70% of the internet. Some constraints of interactive media might be detached; such as augmented bandwidth usage and lateness. The need for real-time transmission of video streaming while live leads to employing of Fog computing technologies which is an intermediary layer between the cloud and end user. The latter technology has been introduced to alleviate those problems by providing high real-time response and computational resources near to the
... Show MoreFace Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreIn this work, the nuclear electromagnetic moments for the ground and low-lying excited states for sd shell nuclei have been calculated, resulting in a revised database with 56 magnetic dipole moments and 41 electric quadrupole moments. The shell model calculations are performed for each sd isotope chain, considering the sensitivity of changing the sd two-body effective interactions USDA, USDE, CWH and HBMUSD in the calculation of the one-body transition density matrix elements. The calculations incorporate the single-particle wave functions of the Skyrme interaction to generate a one-body potential in Hartree–Fock theory to calculate the single-particle matrix elements. For most sd shell nuclei, the experimental data are well rep
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreNeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among