Some microorganisms can produce nanocellulose, which is known as bacterial nanocellulose (BNC); the most active bacterial producer is acetic acid bacteria (AAB), which is a gram-negative, motile and obligate aerobic belongs to the family Acetobacteraceae. Bacterial nanocellulose has excellent attention in medical (surgical domain), industrial and pharmaceutical fields because of its flexible properties, characteristics and advantages. So, in this study, the AAB (5AC) isolate was isolated from apple vinegar. The production of BNC was performed by using a natural medium called palm dates liquid medium, the produced bacterial Cellulose was purified by using the sodium hydroxide method; it was observed that the wet weight of the BNC was about (43.11gm), and its dry weight was about (2.2gm); also the bacterial nanocellulose was characterized by various techniques for detect the morphology of the surface area of it, these techniques are: FESEM technique apparatus which used to clarify the surface morphology of nanostructured bacterial thin films, the results of FESEM presented the presence of different nano-scale diameters of nanofibers. Also, Energy Dispersive X-ray Spectroscopy analysis (EDX) was performed. The results showed that the AAB bacterial cellulose membrane composed of the elements: C, O, H, N and Na (40.71%),(13.98%), (38.6%), (5.41%) and (1.3%) respectively, the FTIR analysis showed that the bacterial nanocellulose fiber functional groups and chemical bonds were observed at the region with wavelength (800-1700) cm−1. All these techniques provide an idea about surface morphology and the composition of BNC membrane, giving it many properties that consider BNC a safe bioproduct in many industrial fields.
Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%,
... Show MoreBiologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%,
... Show MoreThis paper presents the synthesis and study of some new mixed-liagnd complexes containing tow amino acids[Alanine(Ala) and phenylalanine (phe)] with some metals . The results products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubilty The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) . Ala = Alanine acid = C3H7NO2 Phe = phenylalanine = C9H11NO2
This paper presents the synthesis and study of some new mixed-ligand complexes containing anthranilic acid and amino acid phenylalanine (phe) with some metals . The resulting products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity . The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg(II) , Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) . A = Anthranilic acid = C7H7NO2 Phe = phenylalanine = C9H11NO2
Thispaperpresentsthesynthesisandstudyofsomenewmixed-liagnd complexescontainingtowaminoacids[Alanine(Ala)andphenylalanine(phe)]withsome metals .Theresultsproductswerefoundtobesolidcrystallinecomplexeswhichhave been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubiltyThe proposed structure of the complexes using program , chem office 3D(2000) .The general formula have been given for the prepared complexes :[M(A-H)(phe-H)]M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) .Ala = Alanine acid = C3H7NO2Phe = phenylalanine = C9H11NO2
Delays and disruption are a common issue in both community and personal building programs The problem exists all throughout the world, but it is particularly prevalent in Iraq, where millions of dollars are squandered each time as a outcome. Delays and interruptions may have serious consequences not just for Iraq's construction plans, but also for the country's economic and social status. While numerous studies have been conducted to investigate the factors driving delays and disruption in Iraqi construction projects, slight consideration has been given to by what means project management implements and approaches have affected the occurrence of project delays and disruption. After analyzing the crucial reasons for delays and instability in
... Show MoreThe current study focuses on the bacterium Acinetobacter baumannii due to its importance as a nosocomial infections source in addition to its increased resistance against antibiotics. Different clinical and hospital environment samples were collected, and cultured on A. baumannii selective media: Leed Acinetobacter agar and Herellea agar. A. baumannii have been identified by traditional methods, followed by confirmation using molecular identification to detect blaoxa-51 like gene which is considered a diagnostic gene since it is present in genome of all A. baumannii strains. The result was, nineteen bacterial isolates of A.baumannii were obtained, from twenty-seven suspected isolate
... Show MoreLow conversion copolymerization of acrylamide AM (monomer-1) have been conducted with acrylic acid AA in dry benzene at 70°C , using Benzoyl peroxide BPO as initiator . The copolymer composition has been determined by elemental analysis. The monomer reactivity ratios have been calculated by the Kelen-Tudos and Finman-Ross graphical procedures. The derived reactivity ratios (r1, r2) are: (0.620, 0.996) for (AM / AA) systems , and found that the reactivity of the monomer AA is more than the monomer AM in the copolymerization of (AA/AM) system. The reactivity ratios values were used for microstructures calculation.
Background: We aimed to investigate the accuracy of salivary matrix metalloproteinases (MMP)-8 and -9, and tissue inhibitor of metalloproteinase (TIMP)-1 in diagnosing periodontitis and in distinguishing periodontitis stages (S)1 to S3. Methods: This study was a case–control study that included patients with periodontitis S1 to S3 and subjects with healthy periodontia (controls). Saliva was collected, and then, clinical parameters were recorded, including plaque index, bleeding on probing, probing pocket depth, and clinical attachment level. Diagnosis was confirmed by assessing the alveolar bone level using radiography. Salivary biomarkers were assayed using an enzyme-linked immunosorbent assay. Results: A total of 45 patients (15
... Show More