As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations, if the summer season witnesses it. The Iraqis have a major interruption of electrical power, which forces them to buy electricity from the owners of private generators, and they are subject to their implementation and exploitation. Prices per ampere, as the price of an ampere in hot summer reaches $20, according to their desires, in addition to the environmental pollution left by those generators, as they are usually in residential neighborhoods and near homes, which increases From pollution of fresh air and the environment in residential neighborhoods, and this is what necessitated the aim of this study to find realistic solutions that are in line with the current situation that wounded Iraq is living, as it possesses enormous natural resources, and praise be to God, Lord of the Worlds. Despite all this, Iraq provides energy to most countries, and it suffers from severe power outages. Our study aims to find other alternatives to obtain renewable energy. By building more solar panels and wind turbines to play a decisive role in achieving this goal, which is to provide clean energy, especially since the climate of the Middle East in general and Iraq in particular has solar energy available throughout the year, especially in the hot summer season, and by using artificial intelligence it may be possible to store that energy and save it when needed.
Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreThe tremendous benefits of using cellular phones, which began to increase and unprecedented spread worldwide last decade, were accompanied by harmful effects on the environment due to the increase in electromagnetic radiation (EMR) which be emitted from mobile phone towers. This effect on humans, animals, and plants, which is considered a form of environmental pollution, was sensed by developed countries and Environmental protection organizations. These countries have established restrictions and enacted laws to reduce their negative impact on living beings. The field survey included six major hospitals and 38 schools were distributed over the central neighbourhoods in Al-Najaf city. The results showed that power density (PD) measurement
... Show MoreThis study aimed to investigate the feasibility of treatment actual potato chips processing wastewater in a continuously operated dual chambers microbial fuel cell (MFC) inoculated with anaerobic sludge. The results demonstrated significant removal of COD and suspended solids of more than 99% associated with relatively high generation of current and power densities of 612.5 mW/m3 and 1750 mA/m3, respectively at 100 Ω external resistance.
The aim of advancements in technologies is to increase scientific development and get the overall human satisfaction and comfortability. One of the active research area in recent years that addresses the above mentioned issues, is the integration of radio frequency identification (RFID) technology into network-based systems. Even though, RFID is considered as a promising technology, it has some bleeding points. This paper identifies seven intertwined deficiencies, namely: remote setting, scalability, power saving, remote and concurrent tracking, reusability, automation, and continuity in work. This paper proposes the construction of a general purpose infrastructure for RFID-based applications (IRFID) to tackle these deficiencies. Finally
... Show MoreThe natural ventilation in buildings is one of effective strategies for achieving energy efficiency in buildings by employing methods and ways of passive design, as well as its efficiency in providing high ranges of thermal comfort for occupants in buildings and raises their productivity. Because the concept of natural ventilation for many people confined to achieve through the windows and openings only, become necessary to provide this research to demonstrate the various passive design strategies for natural ventilation. Then, research problem: Insufficient knowledge about the importance and mechanism of the application of passive design strategies for natural ventilation in buildings. The research objective is: Analysis of passive desi
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
In this research (100* 40* 4 cm) solar cell panel was used in Baghdad at autumn season (2010), to get best solar cell panel angles experimentally, and then a mirror (40*50 cm) is use to concentrate incident sunlight intensity on a panel. At first case we get (Tilt angle ?P =60°and Surface Azimuth angle ?P =36°E) is the best angles and other case, we add a mirror at angle = 120° at bottom of panel, then we get output power (27.48watt) is bigger than without using a mirror (25.16watt). We can benefit from these cases in variety applications.
The thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.
The results indicated that the performance of the IX-
... Show MoreIn the present work, experimental tests was done to explain the effect of insulation and water level on the yield output. Linear basin, single slope solar still used to do this purpose. The test was done from May to August 2017 in Mosul City-Iraq (Latitude: Longitude: Elevation: 200 m, and South-East face). Experimental results showed that the yield output of the still increased by 20.785% and 19.864% in case of using thermal insulation at 4cm and 5cm respectively, also the yield output decrease by 15.134% as the water level increase from 4 to 5cm, with the presence of insulation and 14.147% without it. It has been conclude that the insulation and water level play important role in the process of passive
... Show MoreIn this work an experimental study is performed to evaluate the thermal performance
of locally made closed loop solar hot water system using a shell and helical coiled tube
heat exchanger as a storage tank. Several measurements are taken include inlet and outlet
temperatures of both collectors and supply water and temperature distribution within the
storage tank. This is beside the water flow rate in both collectors and load cycle. The
main parameters of the system are obtained.