Recent years have witnessed an increase in the use of composite coatings for numerous applications, including aerospace, aircraft, and maritime vessels. These materials owe this popularity surge to the superior strength, weight, stiffness, and electrical insulation they exhibit over conventional substances, such as metals. The growing demand for such materials is accompanied by the inevitable need for fast, accurate, and affordable nondestructive testing techniques to reveal any possible defects within the coatings or any defects under coating. However, typical nondestructive testing (NDT) techniques such as ultrasonic testing (UT), infrared thermography (IRT), eddy current testing (ECT), and laser shearography (LS) have failed to provide successful results when inspecting composite coatings. Consequently, microwave NDT techniques have emerged to compensate for the shortcomings of traditional NDT approaches. Numerous microwave NDT methods have been reported for composite coatings inspection. Although existing microwave NDT methods have shown successful inspection of composite coatings, they often face several challenges, such as low spatial image quality and extensive data interpretation. Nevertheless, many of these limitations can be addressed by utilizing microwave NDT techniques with modern technologies such as soft computing. Artificially intelligent techniques have greatly enhanced the reliability and accuracy of microwave NDT techniques. This paper reviews various traditional NDT techniques and their limitations in inspecting composite coatings. In addition, the article includes a detailed review of several microwave NDT techniques and their benefits in evaluating composite coatings. The paper also highlights the advantages of using the recently reported microwave NDT approaches employing artificial intelligence approaches. This review demonstrates that microwave NDT techniques in conjunction with artificial intelligence approaches have excellent prospects for further enhancing composite coatings inspection and assessment efficiency. The review aimed to provide the reader with a comprehensive overview of most NDT techniques used for composite materials alongside their most salient features.
Background: Elastomeric chains are one of the most commonly used force delivery systems. They have the ability to exert a continuous force, convenience of use, compatibility to oral environment and cost effectiveness but one of the inherited disadvantages is force degradation. Materials and methods: This in vitro study was designed to evaluate the effect of alcohol presence in mouthwashes on force decay of different configurations of clear elastomeric chains from (Ortho Technology company) which are: closed , short and long under the effect of time at (Initial, 1, 2, 3 and 4 weeks) intervals with exposure to different chemical solutions. A total (540) modules of elastomeric chains of three different types (long, short and closed) trans
... Show MoreBackground: The geriatric patients wearing removable partial dentures are increasing in proportion. At the same time, the root caries prevalence accompanied by gingival recession is increasing. A variety of vehicles can deliver fluoride into the oral cavity, including fluoride mouth-rinse, fluoride dentifrice, topical fluoride, and fluoride-releasing restorative materials, all of which effectively prevent root caries and suppress recurrent caries. This study aimed to evaluate the effect of sodium fluoride addition on some mechanical properties of heat cure acrylic denture base material. Material and method: A total of 90 samples were prepared in this study, then divided into three main groups according to the type of test used (hardness, te
... Show MoreBackground: To evaluate the bony supports of the teeth adjacent to the area of cleft in patient with unilateral cleft lip and palate and to compare these measurements with the measurements of the same teeth in non-cleft side by using CBCT. Materials and methods: The CBCT scans of 30 patients having cleft lip( unilateral) and palate(unilateral), were analyzed and the measurements of the alveolar bony support for teeth that are adjacent to the cleft area were measured with those teeth located on opposite side (non- clef) side. For each tooth, the measurements will taken for the distance between the( cementoenamel junction) (CEJ) and the bony crest (AC) at the( buccal area) was measured and the thickness of the buccal plate At zero, one, tw
... Show More<span lang="EN-US">In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, and industry. In this paper, the physical prototype of a proposed self-balancing platform that described the self-balancing attitude in the (X-axis, Y-axis, or biaxial) under the influence of road disturbance has been introduced. In the physical prototype, the inertial measurement unit (IMU) sensor will sense the disturbance in (X-axis, Y-axis, and biaxial). With the determined error, the corresponding electronic circuit, DC servo motors, and the Arduino software, the platform overcame the tilt angle(disturbance). Optimization of the proportional-integral-
... Show MoreObjectives To tailor composites of polyethylene–hydroxyapatite to function as a new intracanal post for the restoration of endodontically treated teeth (ETT). Methods Silanated hydroxyapatite (HA) and zirconium dioxide (ZrO2) filled low-density polyethylene (LDPE) composites were fabricated by a melt extrusion process and characterised using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The flexural strength and modulus were determined in dry state and post ageing in simulated body fluid and fractured surfaces analysed by SEM. The water uptake and radiographic appearance of the experimental composites were also measured and compared with a commercially known endodontic fibre
... Show MoreThe electrical insulation of the manufacture sulfonated phenol-formaldehyde viscous material (product) has been studied with Polyvinyl-acetate (PVA) and toluene diisocyanate (TDI) blend has been prepared by fixing percentage by weight 3:1 and mixed with different percentages by weight of the product sulfonated phenol formaldehyde viscous mass (SPF). The Fourier transform infrared (FTIR) spectroscopy is done on (SPF) resin powder and prepared film of PVA-TDI-SPF viscous mass. The quality factor (Q), dissipation factor (D), parallel resistance (Rp), series resistance (Rs), parallel capacitance (Cp), series capacitance (Cs) and phase shift (?) are measured. The calculated maximum dielectric constant (??) is 3.49x107 at sample (1) wt.1% SPF vis
... Show More