Preferred Language
Articles
/
cBZk44sBVTCNdQwCIuPC
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recognition applications; the proposed method was evaluated for performance in terms of computational accuracy, convergence analysis, and cost.

Scopus Crossref
View Publication
Publication Date
Fri Jul 01 2011
Journal Name
Engineering And Technology Journal
Off-Line Arabic Signature Recognition Based on Invariant Moments Properties
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 Ieee 9th International Conference On System Engineering And Technology (icset)
A Digital Signature System Based on Real Time Face Recognition
...Show More Authors

This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Mon Aug 01 2022
Journal Name
Mathematics
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
...Show More Authors

Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima

... Show More
View Publication
Scopus (29)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Mon Sep 21 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Emotion Recognition Based on Mining Sub-Graphs of Facial Components
...Show More Authors

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 International Conference On Electrical Engineering And Computer Science (icecos)
An Evolutionary Algorithm for Community Detection Using an Improved Mutation Operator
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Dec 03 2022
Journal Name
Al-kut University College Of Humanities
Deep understanding skills in chemistry among middle school students
...Show More Authors

Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Evergreen
Development, Validation, and Performance Evaluation of An Air-Driven Free-Piston Linear Expander Numerical Model
...Show More Authors

View Publication Preview PDF
Scopus (3)
Scopus Crossref