The majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits, generic skills, and negative aspects. 100 undergraduate students, whose level at the first academic year in College of Veterinary Medicine, the University of Baghdad-Iraq, have participated in this experimental study. The results of independent and dependent variables estimated Cronbach’s Alpha high internal consistency. The study data chooses the alternative hypothesis maintaining that the treatment effect was statistically significant. Collaborative learning correlates positively with development of Iraqi EFL learners of speaking skills on academic benefits, social benefits, and generic skills at the level of significance, unlike passive correspondence. It was risen with negative aspects. The main limitations of the current study were that of small sample size of Iraqi EFL learners among medical colleges. The results revealed merely one medical college among other colleges in medicine, science, social and human studies at the University of Baghdad. It has not covered other levels of undergraduate study. The study recommends additional investigations to explore the value of collaborative learning to achieve student’s speaking skills in human and social fields of the Arab and foreign learning communities
The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThe present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K
The aim of the present research is to identify the test wisdom and the engagement with learning and psychological tension among postgraduate students at the University of Samarra according to the variables of the department, gender, age, and whether students are employee or non-employee. The study also attempts to identify the relationship between the test wisdom and the engagement with learning and psychological tension. The research sample consisted of (75) postgraduate students randomly selected from college of Education. The researcher applied the test–wisdom of (Mellman & Ebel) and the scale of engagement with learning preparation by (Al-zaabi 2013). In addition, the researcher used the list of the psychological stress of (Abu
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Autorías: Abdulsahıb Mohammed Muneer, Habeeb Sabhan Maytham, Kazim Abed Emad. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 1, 2021. Artículo de Revista en Psyke.
Resulted in scientific and technological developments to the emergence of changes in the educational process and methods of teaching modern formats commensurate with the level of mental retardation. Which called for educational institutions, including the University of Baghdad / College of Fine Arts to urge and guide researchers to study and follow-up of recent developments in the educational process in order to develop in the fine arts in general and technical education in particular being play an important role in achieving educational goals. The educational methods of modern educational require effort-intensive and advanced for the development of technical skills among students, and thus worked researcher to employ computer technology
... Show More