This project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence of the functional groups and bonding for the used materials. AFM images reflect coating the network with conductive polymer on the surface parameters and granularity distribution. The sensitivity of the fabricated sensor was measured after exposure the network to 𝑁𝑂2 gas at concentrations of 20 ppm with different operating temperatures using a homemade gas sensor system. The fabricated sensor works at room temperature with a sensitivity of about 56.17% while coating the sensor surface with conductive polymer improves the sensitivity at all operating temperatures.
The present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy
... Show MoreThis paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
The Anticyclone Merge affects Iraq’s climate clearly through its impact on the different climatic elements. where it appears while they pass through special and distinctive weather . and most of this affection appears in temperatures, Therefore, this research study the relationship between the repetition and the survival period of the Anticyclone Merge and temperature average by using coefficient correlation (Pearson) that shows there’s strong inverse relationship between the integration of Anticyclones and temperatures average. &nbs
... Show MoreWe report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The
... Show MoreThe microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show More