This paper aims to deal with the understanding of the properties of the molecular gas hydrogen in the extragalactic spirals sample. It is critical to make observations of CO (J = 1-0) line emission for spiral galaxies, particularly those with an energetic nucleus. In the sample of spiral galaxies compiled, a carbon monoxide CO (1-0) emission line can be observed. This sample of galaxies' gas kinematics and star-forming should be analyzed statistically utilizing appropriate atomic gas HI, molecular gas H2, infrared (1μm-1000μm), visual (at λblue-optical=4400A0), and radio spectrum (at νradio=1.4 GHz and 5GHz) databases. STATISTICA is software that allows us to perform this statistical analysis. The presence of a high scale of star formation activity in these galaxies is dependent linearly on the correlations between galactic luminosities. Our findings show that thermal radio luminosity and LFIR are closely related to CO line luminosity. Further, LCO and MH2 have a steep linear relationship, where the slope of the regression log LCO - LogMH2 equals 1. The LCO-SFR and LFIR-SFR relationship slopes are nearly linear (slope ~1), with a strong partial correlation RCO-SFR of 0.73 between LCO-SFR and a significant correlation RFIR-SFR of 0.5 between LFIR-SFR, according to the statistical analysis. The correlation between the rate of star formation (SFR) and hydrogen gas in spirals is significant in several fields of astrophysics. Hence, it is asserted that the important point of the current study is that there is a significant link between SFR and the actual amount of cold hydrogen gas (Mgas) for the simple reason that in our spiral analysis, the mean atomic cold gas amount quantity is almost 6 times greater than the molecular gaseous amount.
Liquefied petroleum gas (LPG), Natural gas (NG) and hydrogen were all used to operate spark ignition internal combustion engine Ricardo E6. A comparison of CO emissions emitted from each case, with emissions emitted from engine fueled with gasoline as a fuel is conducted.
The study was accomplished when engine operated at HUCR for gasoline n(8:1), was compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 1500 rpm.
CO concentrations were little at lean ratios; it appeared to be effected a little with equivalence ratio in this side, at rich side its values became higher, and it appeared to be effected by equivalence ratio highly, the results s
... Show MoreIn this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.
The current research reports the preparation and fabrication of the silver paste conductor which is employed as a soldering material for electro – optical components ohmic interconnections. The prepared paste possesses electrical characteristics identical to the ohmic connectors as its observable from resistance – temperature variation. Moreover, the I – V characteristics obeys Ohm’s law and this dependency was further confirmed by the nearly constant capacitance measurements with voltage and frequency. A noticeable improvement in electrical conductivity, compared to the pure silver paste sample, was noted for samples prepared by mixing predetermined weight ratios of brass and copper. Furthermore, stability of electrical resistan
... Show MoreSoil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show More
