Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can precisely recognize the human central issues, really work on the exactness of human posture assessment, and can adjust to the intricate scenes with thick individuals and impediment. Finally, the difficulties and possible future trends are described, and the development of the field is presented.
Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreImage Fusion Using A Convolutional Neural Network
Three-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreQuantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Mixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.
Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.
to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure
... Show MoreThe purpose of this research is to find the estimator of the average proportion of defectives based on attribute samples. That have been curtailed either with rejection of a lot finding the kth defective or with acceptance on finding the kth non defective.
The MLE (Maximum likelihood estimator) is derived. And also the ASN in Single Curtailed Sampling has been derived and we obtain a simplified Formula All the Notations needed are explained.