The study was conducted to detect the effect of addition of 0.03, 0.06 and0.10% potassium sorbate and 0.10, 0.15, 0.20 and 0.30% sodium propionate upon the sensory properties of laboratory made biscuit. The statistical analysis of the results revealed no significant differences (P<0.05) between the propionate treatment (A,B,C,D) and between the sorbate treatment (E,F,G) and the control (H) in most sensory properties of biscuit prior to storage. Upon six month storage of biscuit made with addition of different levels of sodium propionate 20-40C (room temperature) no significant differences (P<0.05) were shown on softness, flakiness and color in comparison with the control . No significant differences (P<0.05) were also revealed among the different treatment in appearance, texture, flavor and overall acceptance while they different significantly than the control (H) with scores of 4.1, 3.7, 3.4 and 3.98 respectively. The potassium sorbate-added biscuit treatment (E,F,G) however, didn t show any significant differences as compared with the control (H) in appearance, softness, flakiness, color and overall acceptance. The sensory evalution results revealed the superiority of the treatment with o.15% sodium propionate and 0.03% potassium sorbate levels of addition as compared with the control so that scored 4.66 and 4.68 respectively, in the overall acceptance against 3.98 for the control.
Biosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG sig
... Show MoreThe aim of this research is to study the effect of welded joint design (Butt joint and lap joint) on thejoint strength during tension and fatigue loading with different current of welding (40,50,60,70,80) ^per, and different type of wire welding. The result of this research is showed that the effect of fatigue loading on the type of joint is more than the effect of tension loading on it. And the butt joint welding is better than the lap joint welding during the fatigue loaded.The experimental results of the effect of W'elding current showed that more increasing and more decreasing the value of the heat input, during the welding was found to produce mechanical brittleness on the buttjoint welding during the static and dynamic loading. Also i
... Show MoreThe nanocomposite on the base of synthesis Copper iodide
nanoparticles and polyvinyl alcohol (PVA/CuI) with different
concentration of CuI were obtained using casting technique.
PVA/CuI polymer composite samples have been prepared and
subjected to characterizations using FTIR spectroscopy, The FTIR
spectral analysis shows remarkable variation of the absorption peak
positions with increasing CuI concentration. The obtained results by
X-ray diffraction indicated the formation of cubic CuI particles. The
effects of CuI concentrations on the optical properties of the PVA
films were studied in the region of wavelength, (190-1100) nm.
From the derivation of Tauc's relation it was found that the direct
allowed t
Bulk polycrystalline samples have been prepared by the two-step solid state reaction process. It has been observed that as grown Tl2-xHgxSr2Ca2Cu3O10+δ (with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1) corresponds to the 2223 phase. It has been found that Tc varies with Hg content .The optimum Tc is about 120K for the composition Tl1.6Hg0.4Sr2Ca2Cu3O10+δ.The microstructure for Tl1.6Hg0.4Sr2Ca2Cu3O10+δ observed to be most dense and this phase exhibits the highest stability.
The increasing use of plastics in various aspects of modern life resulted in the availability of enormous amount of wastes, including a negative effect on the environment and humans. So it is necessary to find solutions to deal with these wastes and ensure to use them as solutions to use in concrete mix . In this research the production of concrete containing high and low density polyethylene has been used by (5, 10, 15)% as a replacement of part of the volume of sand, so as to obtain concrete good compressive strength as well as other benefits such as improved possibility of pumping concrete and reduce the loss of concrete for workability polymer is a material that is non-absorbable of water . It is also intended to dispose of these was
... Show MoreThe aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
At atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent