An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification, including ResNet50, VGG19, and InceptionV4; They were trained and tested on an open-source satellite image dataset to analyze the algorithms' efficiency and performance and correlated the classification accuracy, precisions, recall, and f1-score. The result shows that InceptionV4 gives the best classification accuracy of 97% for cloudy, desert, green areas, and water, followed by VGG19 with approximately 96% and ResNet50 with 93%. The findings proved that the InceptionV4 algorithm is suitable for classifying oil spills and no spill with satellite images on a validated dataset.
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreST Alawi, NA Mustafa, Al-Mustansiriyah Journal of Science, 2013
In the last years, new non-invasively laser methods were used to detect breast tumors for pre- and postmenopausal females. The methods based on using laser radiation are safer than the other daily used methods for breast tumor detection like X-ray mammography, CT-scanner, and nuclear medicine.
One of these new methods is called FDPM (Frequency Domain Photon Migration). It is based on the modulation of laser beam by variable frequency sinusoidal waves. The modulated laser radiations illuminate the breast tissue and received from opposite side.
In this paper the amplitude and the phase shift of the received signal were calculated according to the orig
... Show Moreهدفت هذه الدراسة إلى مقارنة أثر أسلوب التعلم التعاوني بالأسلوب التقليدي في التحصيل الدراسي، وعلاقته بالاتجاه نحو الحاسب الآلي عند طلبة كلية التربية بجامعة بغداد خلال دراستهم لمقرر الحاسب الآلي وقد تضمنت إجراءات الدراسة استخدام الأسلوب التجريبي، وذلك بتوزيع أربع شعب دراسية على مجموعتين: "مجموعة تجريبية" يتم تدريسها باستخدام أسلوب التعلم التعاوني، والمجموعة الثانية: "مجموعة ضابطة" يتم تدريسها بالطريق
... Show MoreThe last ten years observed a shift enormous scientific in the method and way that it deals professional with the cost accounting and reflected the result those shift enormous scientific of increase the competitive environmental that accompanied the emergence of a modern manufacturing environmental on surface the long roductive life and emergence advanced information technology that give a central focus of his important on client with growing global markets growth on a large scale.
The research aim to define the concept of cost awareness, the concept and methods of strategic cost management and the role of cost awareness for managers of industrial units in strategic of cost managem
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show Morethe banks are one of the public services that must be available in the city to ensure easy financial dealings between citizens and state departments and between the state departments with each other and between the citizens themselves and to ensure easy access to it, so it is very important to choose the best location for the bank, which can serve the largest number of The population achieves easy access. Due to the difficulty of obtaining accurate information dealing with the exact coordinates and according to the country's specific projection, the researcher will resort to the default work using some of the files available in the arcview program
The study aimed to determine the effect of the flipped learning model in improving the acquisition of the overhand serve skill in volleyball among second-year students at the College of Physical Education and Sport Sciences, University of Baghdad, for the academic year 2024/2025. The study used an experimental design with a control group and pre-post testing, on a purposive sample consisting of 12 students. The model relied on watching short videos before class via the SGS application, and practical application in class at a rate of three sessions per week. The results showed a significant improvement in performance, as the calculated value (t = 5.356) exceeded the tabulated value (2.042) at a significance level of 0.05. The percentage of s
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show MoreThe penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show More