An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification, including ResNet50, VGG19, and InceptionV4; They were trained and tested on an open-source satellite image dataset to analyze the algorithms' efficiency and performance and correlated the classification accuracy, precisions, recall, and f1-score. The result shows that InceptionV4 gives the best classification accuracy of 97% for cloudy, desert, green areas, and water, followed by VGG19 with approximately 96% and ResNet50 with 93%. The findings proved that the InceptionV4 algorithm is suitable for classifying oil spills and no spill with satellite images on a validated dataset.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe aim of the research was to prepare Pilates exercises using the barrel ladder apparatus and to identify the effect of Pilates exercises on agility, coordination, and motor sequences of third-year female students in artistic gymnastics. The researcher adopted the experimental method to achieve the objectives of the study and to verify its hypotheses, as it is suitable for the nature and problem of the research. In selecting the research population, the researcher carefully chose the sample using a purposive method, clarifying its elements and constituent units. The research population consisted of third-year female students at the College of Physical Education and Sports Sciences for Women / University of Baghdad, with a total of 20 stud
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
This paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreThe present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.
The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltme
... Show MoreThe subject of an valuation of quality of construction projects is one of the topics which it becomes necessary of the absence of the quantity standards in measuring the control works and the quality valuation standards in constructional projects. In the time being it depends on the experience of the workers which leads to an apparent differences in the valuation.
The idea of this research came to put the standards to evaluate the quality of the projects in a special system depending on quantity scale nor quality specifying in order to prepare an expert system “ Crystal “ to apply this special system to able the engineers to valuate the quality of their projects easily and in more accurate ways.
The fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
This study aimed at identifying the effect of violence on speech disorders concerning Arab Broadcasting . Language is a pot of thought and a mirror of human civilization and communication tool, but the Arabic language is suffering a lot of extraneous terms them, particularly through the media. This study attempts to answer the following question: Is the phenomenon of linguistic duality in the Media reflected negatively on the rules of the classical language? The study deals with the explanation and interpretation of the phenomenon that has become slang exist in our Media More. And the study suggests re- consideration of the value in the Media ,hence the problem will be resolved.
The core idea of this study revolves around the news coverage by Iraqi satellite channels regarding corruption issues and their implications on the public's perception of the political process. The researcher designed a content analysis form encompassing both primary and sub-categories of news bulletins from the channels, Dijlah and Al-Itijah, spanning from 01/06/2021 to 31/08/2021, using a comprehensive enumeration method. The chosen timeframe preceded the parliamentary elections held in October 2021. Employing a descriptive-analytical approach coupled with observation, the researcher derived results that met the study's objectives. Among these findings, news items enhanced with video content topped the categorie
... Show More