Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
This paper presents an experimental and theoretical analysis to investigate the two-phase flow boiling heat transfer coefficient and pressure drop of the refrigerant R-134a in the evaporator test section of the refrigeration system under different operating conditions. The test conditions considered are, for heat flux (13.7-36.6) kW/m2, mass flux (52-105) kg/m2.s, vapor quality (0.2-1) and saturation temperature (-15 to -3.7) ˚C. Experiments were carried out using a test rig for a 310W capacity refrigeration system, which is designed and constructed in the current work. Investigating of the experimental results has revealed that, the enhancement in local heat trans
... Show MoreThe aim of this research is to develop qualitative workouts based on certain sensory perceptions for the development of offensive basketball abilities and to determine their impact on female pupils. Several findings, based on the au-thor's extensive expertise instructing basketball materials and our closeness to the sample, revealed deficits in some sensory perceptions “in the game of basketball”, which impair the accuracy of passing the ball to the best team-mate. It also affects the pace of dribbling and the difficulty of selecting the op-timal moment and distance to fire. Therefore, the researcher designs qualita-tive activities based on many sensory experiences, including distance, speed, force, and direction shift. In addition, the
... Show MoreQuantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rat
... Show MoreSilica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review,
... Show More