Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.
Background: Molars and premolars are considered as the most vulnerable teeth of caries attack, which is related to the morphology of their occlusal surfaces along with the difficulty of plaque removal. different methods were used for early caries detection that provide sensitive, accurate preoperative diagnosis of caries depths to establish adequate preventive measures and avoid premature tooth treatment by restoration. The aim of the present study was to evaluate the clinical sensitivity and specificity rates of DIAGNOdent and visual inspection as opposed to the ICDAS for the detection of initial occlusal caries in noncavitated first permanent molars. Materials and Methods: This study examined 139 occlusal surface of the first permanent
... Show MoreThe Late Cretaceous-Early Paleocene Shiranish and Aliji formations have been studied in three selected wells in Jambur Oil Field (Ja-50, Ja-53, and Ja-67) in Kirkuk, Northeastern Iraq. This study included lithostratigraphy and biostratigraphy. The Late Campanian-Maastrichtian Shiranish Formation consist mainly of thin marly and chalky limestone beds overlain by thin marl beds, with some beds of marly limestone representing an outer shelf basinal environment, the unconformable contact with the above Middle Paleocene-Early Eocene Aliji Formation contain layers of limestone with marly limestone and chalky limestone which represents an outer shelf basinal environment. Five Biozones in the Shiranish Formation were determined which are: 1
... Show MoreThe marine collagens are biocompatible and biodegradable materials that are considered as a biomimetic approach for tissue regeneration. This study evaluated the effect of daily consumption of marine collagen supplement drink on enamel white spot lesions (WSLs), comparing the results against Regenerate system and Sylc air abrasion methods. Fifty human enamel slabs were allocated into five groups (n = 10 per group): non-treated (sound); non-treated (WSLs, 8% methylcellulose gel with 0.1 M lactic acid (pH 4.6) at 37 °C for 21 days); and three treated surfaces with marine collagen; Regenerate system; and Sylc air abrasion. The treatment lasted for 28 days followed by four weeks’ storage in artificial saliva (pH = 7.0, 37 °C). Evalu
... Show MoreA vascular necrosis (AVN) is defined as cellular death of bone components due to interruption of the blood supply; the bone structures then collapse, resulting in bone destruction, pain, and loss of joint function. AVN is associated with numerous conditions and usually involves the epiphysis of long bones, such as the femoral head. In clinical practice, AVN is most commonly encountered in the hip. Early diagnosis and appropriate intervention can delay the need for joint replacement. However, most patients present late in the disease course. Without treatment, the process is almost always progressive, leading to joint destruction within 5 years. Treatment of a vascular necrosis depends mainly on early diagnosis which mainly based on clinical
... Show MoreBackground: Hip fractures are common, morbid, and costly health events that threaten independence and function of older patients . Early functional recovery is extremely important for elderly patients with femoral intertrochanteric fractures to shorten their hospital stay, omit the necessity of the further nursing and care services, and reduce associated medical expenditures . Assessment of (ADL) is an important predictor of outcomes Of orthopedic surgery in very early postoperative period at two weeks and a month postoperatively using Japanese orthopedic score get a quick recovery of ADL & return the patient to his or her premorbid level function reducing the morbidity and mortality.
... Show More<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.